AIS Data Aided Rayleigh CFAR Ship Detection Algorithm of Multiple-Target Environment in SAR Images

This article proposes an automatic identification system (AIS) data aided Rayleigh constant false alarm rate (AIS-RCFAR) ship detection algorithm of multiple-target environment in synthetic aperture radar (SAR) images. This method aims to improve the detection performance in complex environment with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems Jg. 58; H. 2; S. 1266 - 1282
Hauptverfasser: Ai, Jiaqiu, Pei, Zhilin, Yao, Baidong, Wang, Zhaocheng, Xing, Mengdao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9251, 1557-9603
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article proposes an automatic identification system (AIS) data aided Rayleigh constant false alarm rate (AIS-RCFAR) ship detection algorithm of multiple-target environment in synthetic aperture radar (SAR) images. This method aims to improve the detection performance in complex environment with the aid of AIS data. Traditional CFAR detectors generally use all the samples in the local background window for parameter estimation. However, in multiple-target environment, clutter edges and transition areas, due to the interference of the high-intensity outliers, such as target pixels, ghosts, and other interfering pixels, the parameters are often overestimated, causing degradation of the detection performance. Aiming at solving this problem, AIS-RCFAR designs an adaptive-threshold based clutter trimming method with an adaptive-trimming-depth aided by AIS data to effectively eliminate the high-intensity outliers in the local background window while greatly sustaining the real sea clutter samples. Maximum-likelihood-estimator with a closed-form solution is proposed to precisely estimate the parameters using the adaptively-trimmed clutter samples, the probability density function of the sea clutter following Rayleigh distribution can be accurately modeled. AIS-RCFAR greatly enhances the detection rate in both homogeneous and nonhomogeneous multiple-target environment, it also achieves a very low false alarm rate. In addition, the whole procedure of AIS-RCFAR is simple and efficient. Simulated data and real SAR images with corresponding matched AIS data are used for experiments to validate the superiority and feasibility of AIS-RCFAR.
AbstractList This article proposes an automatic identification system (AIS) data aided Rayleigh constant false alarm rate (AIS-RCFAR) ship detection algorithm of multiple-target environment in synthetic aperture radar (SAR) images. This method aims to improve the detection performance in complex environment with the aid of AIS data. Traditional CFAR detectors generally use all the samples in the local background window for parameter estimation. However, in multiple-target environment, clutter edges and transition areas, due to the interference of the high-intensity outliers, such as target pixels, ghosts, and other interfering pixels, the parameters are often overestimated, causing degradation of the detection performance. Aiming at solving this problem, AIS-RCFAR designs an adaptive-threshold based clutter trimming method with an adaptive-trimming-depth aided by AIS data to effectively eliminate the high-intensity outliers in the local background window while greatly sustaining the real sea clutter samples. Maximum-likelihood-estimator with a closed-form solution is proposed to precisely estimate the parameters using the adaptively-trimmed clutter samples, the probability density function of the sea clutter following Rayleigh distribution can be accurately modeled. AIS-RCFAR greatly enhances the detection rate in both homogeneous and nonhomogeneous multiple-target environment, it also achieves a very low false alarm rate. In addition, the whole procedure of AIS-RCFAR is simple and efficient. Simulated data and real SAR images with corresponding matched AIS data are used for experiments to validate the superiority and feasibility of AIS-RCFAR.
Author Yao, Baidong
Ai, Jiaqiu
Pei, Zhilin
Xing, Mengdao
Wang, Zhaocheng
Author_xml – sequence: 1
  givenname: Jiaqiu
  orcidid: 0000-0001-7923-0172
  surname: Ai
  fullname: Ai, Jiaqiu
  email: aijiaqiu1985@hfut.edu.cn
  organization: Hefei University of Technology, Hefei, China
– sequence: 2
  givenname: Zhilin
  orcidid: 0000-0003-4143-529X
  surname: Pei
  fullname: Pei, Zhilin
  email: zhilinpei@mail.hfut.edu.cn
  organization: Hefei University of Technology, Hefei, China
– sequence: 3
  givenname: Baidong
  surname: Yao
  fullname: Yao, Baidong
  email: yao1984@mail.ustc.edu.cn
  organization: China Electronics Technology Corporation, Beijing, China
– sequence: 4
  givenname: Zhaocheng
  orcidid: 0000-0003-4890-2540
  surname: Wang
  fullname: Wang, Zhaocheng
  email: zcwang@hebut.edu.cn
  organization: Hebei University of Technology, Tianjin, China
– sequence: 5
  givenname: Mengdao
  orcidid: 0000-0002-4084-0915
  surname: Xing
  fullname: Xing, Mengdao
  email: xmd@xidian.edu.cn
  organization: Xidian University, Xian, China
BookMark eNp9kE1rwkAQhpdioWr7A0ovCz3H7uzmY_cY_GgFS0HtOYxxoisxsZu14L9vROmhh15mGHifmeHpsU5VV8TYI4gBgDAvy3S8GEghYaAAQIfmhnUhipLAxEJ1WFcI0IGREdyxXtPs2jHUoeqyVTpd8BF65Kld05rP8VSS3Wz5cJLO-WJrD3xEnnJv64qn5aZ21m_3vC74-7H09lBSsES3Ic_H1bd1dbWnynNb8UWLT_e4oeae3RZYNvRw7X32ORkvh2_B7ON1OkxnQS6l8kFbtF4XkRFoxKoICw3UPp0IgXGuAUmizGMdFzKMMWkHvSaNAuUKVIwQqj57vuw9uPrrSI3PdvXRVe3JTMahSYySGtoUXFK5q5vGUZEdnN2jO2UgsrPK7KwyO6vMripbJvnD5NbjWYl3aMt_yacLaYno95KJVCSlUT9_LIDb
CODEN IEARAX
CitedBy_id crossref_primary_10_1080_01431161_2023_2182652
crossref_primary_10_1109_JSTARS_2025_3600243
crossref_primary_10_1109_TGRS_2024_3449894
crossref_primary_10_1109_LGRS_2025_3527763
crossref_primary_10_1080_17538947_2025_2507842
crossref_primary_10_1155_2023_1240426
crossref_primary_10_1109_TAES_2024_3480052
crossref_primary_10_1109_TGRS_2024_3521971
crossref_primary_10_3390_rs15133322
crossref_primary_10_1109_JSTARS_2025_3533140
crossref_primary_10_1109_TAES_2023_3274101
crossref_primary_10_1109_LSP_2024_3396657
crossref_primary_10_1109_TGRS_2022_3227938
crossref_primary_10_1109_TGRS_2025_3534234
crossref_primary_10_1109_TGRS_2022_3217035
crossref_primary_10_1109_MGRS_2024_3404506
crossref_primary_10_1109_JSTARS_2024_3354271
crossref_primary_10_3390_rs16142551
crossref_primary_10_1007_s13131_021_1980_2
crossref_primary_10_1109_TAES_2022_3198034
crossref_primary_10_1109_LGRS_2024_3450293
crossref_primary_10_1109_TGRS_2022_3188151
crossref_primary_10_1109_JSTARS_2024_3469209
crossref_primary_10_1109_JSTARS_2025_3592850
crossref_primary_10_3390_rs15184480
Cites_doi 10.1109/APSAR.2009.5374239
10.1109/ACSSC.1991.186564
10.1109/TAES.1973.309705
10.1117/12.262719
10.1109/IGARSS.2001.977077
10.1109/TITS.2019.2911692
10.1109/TAES.1982.309210
10.1109/TAES.1977.308466
10.1109/TGRS.2020.2979252
10.1109/TAES.1980.308885
10.1109/TGRS.2014.2363356
10.1109/RADAR.2013.6652006
10.1109/LGRS.2012.2224317
10.1117/12.864820
10.1109/TGRS.2013.2282820
10.1109/JOE.2017.2767106
10.1080/713821561
10.1109/7.570713
10.1109/TGRS.2010.2071879
10.3390/rs1030375
10.1109/TAES.1978.308625
10.1109/TAES.2021.3050654
10.1117/1.JRS.7.071599
10.1109/7.256288
10.1109/7.869503
10.1109/LGRS.2010.2098434
10.1109/JSTSP.2011.2138675
10.1017/S0373463313000702
10.3390/e15062218
10.1080/07038992.2001.10854896
10.1109/JOE.2017.2768198
10.1109/LGRS.2010.2048697
10.1109/TIP.2004.823825
10.1109/IGARSS.2011.6048956
10.1109/LGRS.2018.2838263
10.1109/ICMLC.2005.1527194
10.1109/7.78295
10.1109/LGRS.2010.2090492
10.1109/LGRS.2010.2041322
10.1109/TGRS.2015.2451311
10.3390/s17071578
10.1109/IGARSS.2008.4778892
10.1109/36.581981
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2021.3111849
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 1282
ExternalDocumentID 10_1109_TAES_2021_3111849
9535229
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2020T130165
  funderid: 10.13039/501100002858
– fundername: Fundamental Research Funds for the Central Universities
  grantid: JZ2020HGTB0012; PA2021AKSK0113
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 62071164; 61701157; 62001155
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c223t-22388df590a90bf4f81e018700a6c81ae2a2c686f246a72a28de8a0a2b136a143
IEDL.DBID RIE
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782444700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9251
IngestDate Mon Jun 30 10:12:58 EDT 2025
Sat Nov 29 01:51:32 EST 2025
Tue Nov 18 21:20:27 EST 2025
Wed Aug 27 02:40:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-22388df590a90bf4f81e018700a6c81ae2a2c686f246a72a28de8a0a2b136a143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4890-2540
0000-0001-7923-0172
0000-0002-4084-0915
0000-0003-4143-529X
PQID 2649793281
PQPubID 85477
PageCount 17
ParticipantIDs crossref_primary_10_1109_TAES_2021_3111849
crossref_citationtrail_10_1109_TAES_2021_3111849
proquest_journals_2649793281
ieee_primary_9535229
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
Novak (ref13) 1993; 6
ref34
ref15
ref37
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
Crisp (ref14) 2004; 35
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – volume: 6
  start-page: 11
  issue: 1
  year: 1993
  ident: ref13
  article-title: Performance of a high-resolution polarimetric SAR automatic target recognition system
  publication-title: Linc Lab. J.
– ident: ref35
  doi: 10.1109/APSAR.2009.5374239
– ident: ref32
  doi: 10.1109/ACSSC.1991.186564
– ident: ref17
  doi: 10.1109/TAES.1973.309705
– ident: ref27
  doi: 10.1117/12.262719
– ident: ref12
  doi: 10.1109/IGARSS.2001.977077
– ident: ref39
  doi: 10.1109/TITS.2019.2911692
– ident: ref30
  doi: 10.1109/TAES.1982.309210
– ident: ref33
  doi: 10.1109/TAES.1977.308466
– ident: ref42
  doi: 10.1109/TGRS.2020.2979252
– ident: ref31
  doi: 10.1109/TAES.1980.308885
– ident: ref26
  doi: 10.1109/TGRS.2014.2363356
– ident: ref4
  doi: 10.1109/RADAR.2013.6652006
– ident: ref25
  doi: 10.1109/LGRS.2012.2224317
– ident: ref28
  doi: 10.1117/12.864820
– ident: ref37
  doi: 10.1109/TGRS.2013.2282820
– ident: ref3
  doi: 10.1109/JOE.2017.2767106
– ident: ref19
  doi: 10.1080/713821561
– ident: ref10
  doi: 10.1109/7.570713
– ident: ref1
  doi: 10.1109/TGRS.2010.2071879
– ident: ref2
  doi: 10.3390/rs1030375
– ident: ref29
  doi: 10.1109/TAES.1978.308625
– ident: ref40
  doi: 10.1109/TAES.2021.3050654
– ident: ref43
  doi: 10.1117/1.JRS.7.071599
– ident: ref22
  doi: 10.1109/7.256288
– ident: ref34
  doi: 10.1109/7.869503
– ident: ref36
  doi: 10.1109/LGRS.2010.2098434
– ident: ref24
  doi: 10.1109/JSTSP.2011.2138675
– ident: ref8
  doi: 10.1017/S0373463313000702
– ident: ref9
  doi: 10.3390/e15062218
– ident: ref11
  doi: 10.1080/07038992.2001.10854896
– ident: ref16
  doi: 10.1109/JOE.2017.2768198
– ident: ref18
  doi: 10.1109/LGRS.2010.2048697
– ident: ref45
  doi: 10.1109/TIP.2004.823825
– ident: ref38
  doi: 10.1109/IGARSS.2011.6048956
– ident: ref41
  doi: 10.1109/LGRS.2018.2838263
– ident: ref23
  doi: 10.1109/ICMLC.2005.1527194
– ident: ref21
  doi: 10.1109/7.78295
– ident: ref44
  doi: 10.1109/LGRS.2010.2090492
– ident: ref7
  doi: 10.1109/LGRS.2010.2041322
– volume: 35
  start-page: 2165
  issue: 42
  year: 2004
  ident: ref14
  article-title: The state-of-the-art in ship detection in synthetic aperture radar imagery
  publication-title: Org. Lett.
– ident: ref15
  doi: 10.1109/TGRS.2015.2451311
– ident: ref5
  doi: 10.3390/s17071578
– ident: ref6
  doi: 10.1109/IGARSS.2008.4778892
– ident: ref20
  doi: 10.1109/36.581981
SSID ssj0014843
Score 2.5035908
Snippet This article proposes an automatic identification system (AIS) data aided Rayleigh constant false alarm rate (AIS-RCFAR) ship detection algorithm of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1266
SubjectTerms Adaptive-depth based clutter trimming
Algorithms
Artificial intelligence
Automatic Identification System (AIS) information
Closed-form solution
Clutter
Constant false alarm rate
Constant false alarm rate (CFAR)
Detectors
False alarms
Marine vehicles
Maximum likelihood estimators
Outliers (statistics)
Parameter estimation
Pixels
Probability density functions
Radar imaging
Radar polarimetry
Rayleigh distribution
SAR ship detection
Synthetic aperture radar
Target detection
Trimming
Title AIS Data Aided Rayleigh CFAR Ship Detection Algorithm of Multiple-Target Environment in SAR Images
URI https://ieeexplore.ieee.org/document/9535229
https://www.proquest.com/docview/2649793281
Volume 58
WOSCitedRecordID wos000782444700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014843
  issn: 0018-9251
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7m8EEf_C1Op-TBJ7Euybo2eSxzw4EOcVP2VtI01YLrxtb595tk2RQUwZfSwh2Ufs3lLvfdHcBl0kyZ6evkyVaiA5REEE9kkntESCWbmR9mlu3-ch_2-2w04o8VuF7XwiilLPlM3Zhbm8tPJ3Jhjsoa3PQioXwDNsIwXNZqrTMGPnMMOaIXsN60XQaTYN4YRp2BjgQp0QGq9qdN28xve5AdqvLDEtvtpbv7vxfbgx3nRqJoifs-VFRxANvfmgseQhL1BuhWlAJFeapS9KRjc3MOitrd6AkN3vIpulWlZWIVKHp_nczy8m2MJhl6cCRDb2hp4qjzVQyH8gINtHpvrO3Q_Aieu51h-85zExU8qd2A0tMXxtKsxbHgOMn8jBFlpvJhLALJiFBUUBmwIKN-IEL9wFLFBBY0Ic1AaNfqGKrFpFAngExGVja5lvepnzLGlQi5ic4obgmhcA3w6hvH0rUbN1Mv3mMbdmAeG1hiA0vsYKnB1Vpluuy18ZfwocFhLeggqEF9BWTsVuM81k4f13aIMnL6u9YZbFFT1mAZOXWolrOFOodN-VHm89mF_dE-Ad0TzaM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfovzMw8-iXVJ1nXJY9GNDecQN8W3kqapK2zd2Kp_v0kWp6AIvpQW7qD011zucr-7A7iIqwkzfZ08WYt1gBIL4olUco8IqWQ19eupZbs_d-rdLnt54Q8luFrUwiilLPlMXZtbm8tPxvLNHJVVuOlFQvkSrNR8n5J5tdYiZ-Azx5EjegnrbdvlMAnmlX7Y6OlYkBIdomqP2jTO_LYL2bEqP2yx3WCaW_97tW3YdI4kCufI70BJ5buw8a294B7EYbuHbkUhUJglKkGPOjo3J6Hophk-ot4gm6BbVVguVo7C4et4mhWDERqn6N7RDL2-JYqjxlc5HMpy1NPq7ZG2RLN9eGo2-jctz81U8KR2BApPXxhL0hrHguM49VNGlJnLh7EIJCNCUUFlwIKU-oGo6weWKCawoDGpBkI7VwewnI9zdQjI5GRllWt5n_oJY1yJOjfxGcU1IRQuA_78xpF0DcfN3IthZAMPzCMDS2RgiRwsZbhcqEzm3Tb-Et4zOCwEHQRlOPkEMnLrcRZpt49rS0QZOfpd6xzWWv37TtRpd--OYZ2aIgfLzzmB5WL6pk5hVb4X2Wx6Zn-6D7zz0Oo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AIS+Data+Aided+Rayleigh+CFAR+Ship+Detection+Algorithm+of+Multiple-Target+Environment+in+SAR+Images&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Ai%2C+Jiaqiu&rft.au=Pei%2C+Zhilin&rft.au=Yao%2C+Baidong&rft.au=Wang%2C+Zhaocheng&rft.date=2022-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=58&rft.issue=2&rft.spage=1266&rft_id=info:doi/10.1109%2FTAES.2021.3111849&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon