CRMF: A fault localization approach based on class reduction and method call frequency

Identifying the location of faults in real‐world programs is one of the costly processes during software debugging. To reduce the debugging effort, various fault localization techniques have been proposed in recent years. Spectrum‐based fault localization (SBFL) is one kind of widely investigated fa...

Full description

Saved in:
Bibliographic Details
Published in:Software, practice & experience Vol. 53; no. 4; pp. 1061 - 1090
Main Authors: Liu, Hengyuan, Li, Zheng, Wang, Haifeng, Liu, Yong, Chen, Xiang
Format: Journal Article
Language:English
Published: Bognor Regis Wiley Subscription Services, Inc 01.04.2023
Subjects:
ISSN:0038-0644, 1097-024X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Identifying the location of faults in real‐world programs is one of the costly processes during software debugging. To reduce the debugging effort, various fault localization techniques have been proposed in recent years. Spectrum‐based fault localization (SBFL) is one kind of widely investigated fault localization technique. Most SBFL techniques first calculate the suspiciousness of program elements (such as statements, methods) to be faulty using the coverage information and execution results of tests. Then a rank list of program elements is generated according to their suspiciousness. However, some SBFL techniques only consider the binary coverage information (i.e., whether the program element is covered) but ignore some of the tests' running behaviors, such as the execution frequency when faults occur in the iteration entities or loop bodies, which are more likely to be faulty followed the propagation‐infection‐execution model. The execution frequency based techniques only replace the feature items of the existing formula limiting their effectiveness in fault localization. In this article, we propose a fault localization technique, class reduction and method call frequency (CRMF), which utilizes mutation analysis and information retrieval techniques. In particular, CRMF first uses mutation analysis to identify and reduce the classes, in which the program elements with a low probability of being faulty. Then we propose a new suspiciousness formula that applies information retrieval and considers method call frequency. To evaluate the effectiveness of CRMF, we conduct empirical studies on 264 real‐world programs from the Defects4J benchmark. Final results show that CRMF outperforms the statement frequency based technique FLSF and SBFL techniques (i.e., Ochiai, OP2, Tarantula, and Dstar) in both single‐fault programs and multiple‐fault programs. Specifically, CRMF can rank 29, 74, and 112 faults at the top 1, 3, 5 ranks and achieve a higher mean reciprocal rank for single‐fault programs and multiple‐fault programs. Finally, we discuss the essence of CRMF and analyze its effectiveness on multi‐fault programs in detail.
AbstractList Identifying the location of faults in real‐world programs is one of the costly processes during software debugging. To reduce the debugging effort, various fault localization techniques have been proposed in recent years. Spectrum‐based fault localization (SBFL) is one kind of widely investigated fault localization technique. Most SBFL techniques first calculate the suspiciousness of program elements (such as statements, methods) to be faulty using the coverage information and execution results of tests. Then a rank list of program elements is generated according to their suspiciousness. However, some SBFL techniques only consider the binary coverage information (i.e., whether the program element is covered) but ignore some of the tests' running behaviors, such as the execution frequency when faults occur in the iteration entities or loop bodies, which are more likely to be faulty followed the propagation‐infection‐execution model. The execution frequency based techniques only replace the feature items of the existing formula limiting their effectiveness in fault localization. In this article, we propose a fault localization technique, class reduction and method call frequency (CRMF), which utilizes mutation analysis and information retrieval techniques. In particular, CRMF first uses mutation analysis to identify and reduce the classes, in which the program elements with a low probability of being faulty. Then we propose a new suspiciousness formula that applies information retrieval and considers method call frequency. To evaluate the effectiveness of CRMF, we conduct empirical studies on 264 real‐world programs from the Defects4J benchmark. Final results show that CRMF outperforms the statement frequency based technique FLSF and SBFL techniques (i.e., Ochiai, OP2, Tarantula, and Dstar) in both single‐fault programs and multiple‐fault programs. Specifically, CRMF can rank 29, 74, and 112 faults at the top 1, 3, 5 ranks and achieve a higher mean reciprocal rank for single‐fault programs and multiple‐fault programs. Finally, we discuss the essence of CRMF and analyze its effectiveness on multi‐fault programs in detail.
Author Li, Zheng
Liu, Hengyuan
Liu, Yong
Wang, Haifeng
Chen, Xiang
Author_xml – sequence: 1
  givenname: Hengyuan
  surname: Liu
  fullname: Liu, Hengyuan
  organization: Beijing University of Chemical Technology
– sequence: 2
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: Beijing University of Chemical Technology
– sequence: 3
  givenname: Haifeng
  orcidid: 0000-0003-2482-375X
  surname: Wang
  fullname: Wang, Haifeng
  email: h.f.wang@hotmail.com
  organization: Beijing University of Chemical Technology
– sequence: 4
  givenname: Yong
  orcidid: 0000-0003-1754-3039
  surname: Liu
  fullname: Liu, Yong
  email: lyong@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology
– sequence: 5
  givenname: Xiang
  orcidid: 0000-0002-1180-3891
  surname: Chen
  fullname: Chen, Xiang
  organization: Nantong University
BookMark eNp10E1LwzAYB_AgE9ym4EcIePHS-iRtms7bGJsKE8U3vIUsTVhH1takReanN1s9iZ4Swu-f52WEBlVdaYTOCcQEgF75RscJ4fkRGhKY8Aho-j5AQ4AkjyBL0xM08n4DQAij2RC9zZ7uF9d4io3sbIttraQtv2Rb1hWWTeNqqdZ4Jb0ucHhRVnqPnS461YuqwFvdrusCh5zFxumPTldqd4qOjbRen_2cY_S6mL_MbqPlw83dbLqMFKWhIWMmmiSgc8pMqieck5xlKwnAVVaA4WlKWcaMzCgr9iqQcCPaZKuckFwmY3TR_xs6DZV9KzZ156pQUlAeSMISyIOKe6Vc7b3TRqiyPczYOllaQUDsdyfC7sR-dyFw-SvQuHIr3e4vGvX0s7R6968Tz4_zg_8GUDh-eg
CitedBy_id crossref_primary_10_3390_math12132113
Cites_doi 10.1145/2610384.2628055
10.1109/TSE.2016.2521368
10.1016/S0306-4573(02)00021-3
10.1016/j.infsof.2010.04.002
10.1016/j.infsof.2020.106312
10.1016/j.jss.2020.110661
10.1109/ICSTW.2015.7107448
10.1145/2000791.2000795
10.1016/j.ins.2017.09.006
10.1002/smr.2312
10.1145/1868328.1868347
10.1145/2771783.2771797
10.1145/2950290.2983967
10.1145/1095430.1081753
10.1109/PRDC.2006.18
10.1109/TR.2013.2285319
10.1017/S1351324901002789
10.1109/ISSRE.2018.00026
10.1109/C-M.1978.218136
10.1145/1985441.1985451
10.1109/TR.2020.2982975
10.1109/QRS.2017.22
10.1109/TSE.2007.1016
10.1145/581396.581397
10.1109/ICSE.2017.62
10.5840/jphil2019116724
10.1145/2544173.2509551
10.1109/ASE.2011.6100062
10.1145/2786805.2786880
10.1109/TSE.1978.231514
10.1007/3-540-63531-9_29
10.1145/1287624.1287632
10.1002/9781118071953
10.1145/2559932
10.1109/ACCESS.2020.3004145
10.1109/ICST.2016.22
10.1145/2610384.2628053
10.1145/3078840
10.1109/ICST.2017.9
10.1109/AVSS.2011.6027363
10.1145/277633.277647
10.1109/ICST.2012.159
10.1109/TSE.2019.2911283
10.1109/COMPSAC.2013.139
10.1002/stvr.1509
10.1109/32.153381
10.1109/SCAM52516.2021.00021
10.1002/stvr.409
10.1145/3092703.3092717
10.1145/1416950.1416952
10.1109/ASE.2013.6693093
10.1016/j.ins.2016.04.023
10.1007/978-3-642-39742-4_17
10.1109/ICPC.2017.29
10.1145/2931037.2931051
10.1007/s11432-012-4746-9
10.1109/TSE.2019.2892102
10.1007/978-3-642-33119-0_18
10.1109/DSA52907.2021.00016
10.1109/ICSM.2009.5306315
10.1007/978-1-4757-5939-6_7
10.1145/2554850.2554978
10.1109/ASE.2009.25
10.1016/j.infsof.2018.03.008
10.1109/ICSE.2012.6227210
10.1002/1099-1689(200009)10:3<171::AID-STVR209>3.0.CO;2-J
10.1145/3345628
10.1145/2365952.2365981
10.1145/1361684.1361686
10.1109/ICST.2014.28
10.1016/j.cola.2021.101064
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/spe.3178
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1097-024X
EndPage 1090
ExternalDocumentID 10_1002_spe_3178
SPE3178
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61902015; 61872026; 61672085
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3EH
3R3
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMXK
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
CWDTD
D-E
D-F
D0L
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M61
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
PZZ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RXW
RYL
S10
SAMSI
SUPJJ
TAE
TUS
TWZ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWW
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
YYP
ZCA
ZY4
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2238-ff9e130e825f4e9771856ba007c6d0f7442565fa625d0e82e9725d1ef6b8118a3
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000899023800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-0644
IngestDate Fri Jul 25 12:11:54 EDT 2025
Tue Nov 18 22:00:49 EST 2025
Sat Nov 29 04:02:39 EST 2025
Wed Jan 22 16:23:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2238-ff9e130e825f4e9771856ba007c6d0f7442565fa625d0e82e9725d1ef6b8118a3
Notes Funding information
National Natural Science Foundation of China, Grant/Award Numbers: 61902015; 61872026; 61672085
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2482-375X
0000-0003-1754-3039
0000-0002-1180-3891
PQID 2781135308
PQPubID 1046349
PageCount 30
ParticipantIDs proquest_journals_2781135308
crossref_citationtrail_10_1002_spe_3178
crossref_primary_10_1002_spe_3178
wiley_primary_10_1002_spe_3178_SPE3178
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationSubtitle Practice & Experience
PublicationTitle Software, practice & experience
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 66
2013; 63
1978; 4
2020; 168
2020; 124
2007; 33
2012; 55
2014; 23
2020; 8
1992; 8
2010; 20
2021; 33
2001
2000; 10
2008; 27
2011; 20
2019; 28
2005; 30
2016; 42
2008; 26
2019; 116
2003; 242
2018; 100
2013; 48
2012
2017; 26
1978; 11
2011
2010
2018; 422
2009
1997
2007
2006
2003; 39
2005
1992
2002
2016; 360
1998; 174
2015; 25
2001; 7
2021
2019; 47
2017
2020; 69
1999; 350
2016
2015
2014
2013
2010; 52
1998; 33
Conover WJ (e_1_2_15_62_1) 1999
e_1_2_15_21_1
e_1_2_15_42_1
e_1_2_15_67_1
e_1_2_15_40_1
e_1_2_15_69_1
e_1_2_15_3_1
e_1_2_15_29_1
e_1_2_15_80_1
e_1_2_15_27_1
e_1_2_15_48_1
e_1_2_15_61_1
e_1_2_15_25_1
e_1_2_15_46_1
e_1_2_15_23_1
e_1_2_15_44_1
e_1_2_15_65_1
e_1_2_15_9_1
e_1_2_15_7_1
e_1_2_15_5_1
e_1_2_15_10_1
e_1_2_15_31_1
e_1_2_15_56_1
e_1_2_15_77_1
e_1_2_15_58_1
e_1_2_15_79_1
Wilcoxon F (e_1_2_15_63_1) 1992
e_1_2_15_18_1
e_1_2_15_39_1
e_1_2_15_16_1
e_1_2_15_37_1
e_1_2_15_50_1
e_1_2_15_71_1
e_1_2_15_14_1
e_1_2_15_35_1
e_1_2_15_52_1
e_1_2_15_73_1
e_1_2_15_12_1
e_1_2_15_33_1
e_1_2_15_54_1
e_1_2_15_75_1
e_1_2_15_19_1
e_1_2_15_20_1
e_1_2_15_43_1
e_1_2_15_66_1
e_1_2_15_41_1
e_1_2_15_68_1
e_1_2_15_28_1
e_1_2_15_2_1
e_1_2_15_26_1
e_1_2_15_49_1
e_1_2_15_60_1
e_1_2_15_24_1
e_1_2_15_47_1
e_1_2_15_22_1
e_1_2_15_45_1
e_1_2_15_64_1
e_1_2_15_8_1
e_1_2_15_6_1
e_1_2_15_4_1
e_1_2_15_32_1
e_1_2_15_55_1
e_1_2_15_78_1
e_1_2_15_30_1
e_1_2_15_59_1
e_1_2_15_17_1
Burges CJ (e_1_2_15_57_1) 2007
e_1_2_15_70_1
e_1_2_15_15_1
e_1_2_15_38_1
e_1_2_15_72_1
e_1_2_15_13_1
e_1_2_15_36_1
e_1_2_15_51_1
e_1_2_15_74_1
e_1_2_15_11_1
e_1_2_15_34_1
e_1_2_15_53_1
e_1_2_15_76_1
References_xml – year: 2011
– volume: 23
  start-page: 1
  issue: 1
  year: 2014
  end-page: 28
  article-title: Prevalence of coincidental correctness and mitigation of its impact on fault localization
  publication-title: ACM Trans Softw Eng Methodol (TOSEM)
– volume: 26
  start-page: 13
  issue: 3
  year: 2008
  article-title: Interpreting TF‐IDF term weights as making relevance decisions
  publication-title: ACM Trans Inf Syst (TOIS)
– year: 2005
– start-page: 153
  year: 2014
  end-page: 162
– start-page: 351
  year: 2009
  end-page: 360
– volume: 33
  issue: 3
  year: 2021
  article-title: Improving deep‐learning‐based fault localization with resampling
  publication-title: J Softw Evol Process
– volume: 28
  start-page: 1
  issue: 4
  year: 2019
  end-page: 34
  article-title: Precise learn‐to‐rank fault localization using dynamic and static features of target programs
  publication-title: ACM Trans Softw Eng Methodol (TOSEM)
– volume: 66
  year: 2021
  article-title: Combi‐FL: neural network and SBFL based fault localization using mutation analysis
  publication-title: J Comput Lang
– start-page: 14
  year: 2012
  end-page: 24
– volume: 30
  start-page: 286
  issue: 5
  year: 2005
  end-page: 295
  article-title: SOBER: statistical model‐based bug localization
  publication-title: SIGSOFT Softw Eng Notes
– start-page: 224
  year: 2013
  end-page: 238
– start-page: 1
  year: 2010
  end-page: 10
– start-page: 579
  year: 2015
  end-page: 590
– volume: 350
  year: 1999
– start-page: 43
  year: 2011
  end-page: 52
– volume: 8
  start-page: 124297
  year: 2020
  end-page: 124310
  article-title: IETCR: an information entropy based test case reduction strategy for mutation‐based fault localization
  publication-title: IEEE Access
– start-page: 66
  year: 2021
  end-page: 77
– volume: 124
  year: 2020
  article-title: Multiple fault localization of software programs: a systematic literature review
  publication-title: Inf Softw Technol
– start-page: 437
  year: 2014
  end-page: 440
– start-page: 432
  year: 1997
  end-page: 449
– start-page: 433
  year: 2014
  end-page: 436
– start-page: 408
  year: 2011
  end-page: 413
– volume: 42
  start-page: 707
  issue: 8
  year: 2016
  end-page: 740
  article-title: A survey on software fault localization
  publication-title: IEEE Trans Softw Eng
– volume: 26
  start-page: 1
  issue: 1
  year: 2017
  end-page: 30
  article-title: Human competitiveness of genetic programming in spectrum‐based fault localisation: theoretical and empirical analysis
  publication-title: ACM Trans Softw Eng Methodol (TOSEM)
– start-page: 345
  year: 2013
  end-page: 355
– start-page: 165
  year: 2016
  end-page: 176
– start-page: 241
  year: 2017
  end-page: 250
– start-page: 114
  year: 2017
  end-page: 125
– volume: 25
  start-page: 605
  issue: 5‐7
  year: 2015
  end-page: 628
  article-title: Metallaxis‐FL: mutation‐based fault localization
  publication-title: Softw Test Verification Reliab
– volume: 33
  start-page: 420
  issue: 6
  year: 2007
  end-page: 432
  article-title: Feature location using probabilistic ranking of methods based on execution scenarios and information retrieval
  publication-title: IEEE Trans Softw Eng
– volume: 116
  start-page: 390
  issue: 7
  year: 2019
  end-page: 411
  article-title: Principles of indifference
  publication-title: J Philos
– volume: 48
  start-page: 765
  issue: 10
  year: 2013
  end-page: 784
  article-title: Injecting mechanical faults to localize developer faults for evolving software
  publication-title: ACM SIGPLAN Not
– start-page: 609
  year: 2017
  end-page: 620
– start-page: 35
  year: 2007
  end-page: 44
– volume: 47
  start-page: 1089
  issue: 6
  year: 2019
  end-page: 1113
  article-title: An empirical study of boosting spectrum‐based fault localization via pagerank
  publication-title: IEEE Trans Softw Eng
– volume: 52
  start-page: 972
  issue: 9
  year: 2010
  end-page: 990
  article-title: Bug localization using latent dirichlet allocation
  publication-title: Inf Softw Technol
– start-page: 1
  year: 2015
  end-page: 10
– volume: 422
  start-page: 572
  year: 2018
  end-page: 596
  article-title: An optimal mutation execution strategy for cost reduction of mutation‐based fault localization
  publication-title: Inf Sci
– volume: 100
  start-page: 18
  year: 2018
  end-page: 31
  article-title: Spectrum‐based fault localization in software product lines
  publication-title: Inf Softw Technol
– start-page: 467
  year: 2002
  end-page: 477
– volume: 33
  start-page: 83
  issue: 7
  year: 1998
  end-page: 90
  article-title: An Empirical Investigation of Program Spectra
  publication-title: SIGPLAN Not
– volume: 11
  start-page: 34
  issue: 4
  year: 1978
  end-page: 41
  article-title: Hints on test data selection: help for the practicing programmer
  publication-title: Computer
– volume: 4
  start-page: 293
  year: 1978
  end-page: 298
  article-title: Theoretical and empirical studies of program testing
  publication-title: IEEE Trans Softw Eng
– start-page: 39
  year: 2006
  end-page: 46
– volume: 7
  start-page: 361
  issue: 4
  year: 2001
  end-page: 378
  article-title: The TREC question answering track
  publication-title: Nat Lang Eng
– volume: 10
  start-page: 171
  issue: 3
  year: 2000
  end-page: 194
  article-title: An empirical investigation of the relationship between spectra differences and regression faults
  publication-title: Softw Test Verif Reliab
– volume: 242
  start-page: 133
  year: 2003
  end-page: 142
– volume: 174
  start-page: 21
  year: 1998
– start-page: 244
  year: 2012
  end-page: 258
– volume: 55
  start-page: 2826
  issue: 12
  year: 2012
  end-page: 2840
  article-title: Comparing logic coverage criteria on test case prioritization
  publication-title: Sci China Inf Sci
– volume: 27
  start-page: 2
  issue: 1
  year: 2008
  article-title: Rank‐biased precision for measurement of retrieval effectiveness
  publication-title: ACM Trans Inf Syst (TOIS)
– volume: 63
  start-page: 290
  issue: 1
  year: 2013
  end-page: 308
  article-title: The DStar method for effective software fault localization
  publication-title: IEEE Trans Reliab
– volume: 47
  start-page: 332
  issue: 2
  year: 2019
  end-page: 347
  article-title: An empirical study of fault localization families and their combinations
  publication-title: IEEE Trans Softw Eng
– start-page: 196
  year: 1992
  end-page: 202
– start-page: 1
  year: 2015
  end-page: 11
– volume: 168
  year: 2020
  article-title: HMER: a hybrid mutation execution reduction approach for mutation‐based fault localization
  publication-title: J Syst Softw
– start-page: 103
  year: 2021
  end-page: 113
– volume: 8
  start-page: 717
  year: 1992
  end-page: 727
  article-title: PIE: a dynamic failure‐based technique
  publication-title: IEEE Trans Softw Eng
– start-page: 299
  year: 2016
  end-page: 30
– start-page: 828
  year: 2013
  end-page: 829
– volume: 360
  start-page: 43
  year: 2016
  end-page: 56
  article-title: Fault localization based on statement frequency
  publication-title: Inf Sci
– start-page: 88
  year: 2009
  end-page: 99
– start-page: 193
  year: 2007
  end-page: 200
– start-page: 34
  year: 2001
  end-page: 44
– volume: 20
  start-page: 121
  issue: 2
  year: 2010
  end-page: 147
  article-title: Fault localization based on information flow coverage
  publication-title: Softw Test Verif Reliab
– start-page: 1115
  year: 2016
  end-page: 1117
– start-page: 1293
  year: 2014
  end-page: 1300
– volume: 39
  start-page: 45
  issue: 1
  year: 2003
  end-page: 65
  article-title: An information‐theoretic perspective of TF–IDF measures
  publication-title: Inf Process Manag
– volume: 20
  start-page: 11
  issue: 3
  year: 2011
  article-title: A model for spectra‐based software diagnosis
  publication-title: ACM Trans Softw Eng Methodol (TOSEM)
– volume: 69
  start-page: 1021
  issue: 3
  year: 2020
  end-page: 1049
  article-title: Improving fault‐localization accuracy by referencing debugging history to alleviate structure bias in code suspiciousness
  publication-title: IEEE Trans Reliab
– ident: e_1_2_15_29_1
  doi: 10.1145/2610384.2628055
– ident: e_1_2_15_7_1
  doi: 10.1109/TSE.2016.2521368
– ident: e_1_2_15_26_1
  doi: 10.1016/S0306-4573(02)00021-3
– ident: e_1_2_15_66_1
  doi: 10.1016/j.infsof.2010.04.002
– ident: e_1_2_15_78_1
  doi: 10.1016/j.infsof.2020.106312
– ident: e_1_2_15_72_1
  doi: 10.1016/j.jss.2020.110661
– ident: e_1_2_15_73_1
  doi: 10.1109/ICSTW.2015.7107448
– ident: e_1_2_15_41_1
– ident: e_1_2_15_31_1
  doi: 10.1145/2000791.2000795
– ident: e_1_2_15_56_1
  doi: 10.1016/j.ins.2017.09.006
– ident: e_1_2_15_58_1
  doi: 10.1002/smr.2312
– ident: e_1_2_15_76_1
  doi: 10.1145/1868328.1868347
– ident: e_1_2_15_69_1
  doi: 10.1145/2771783.2771797
– ident: e_1_2_15_13_1
  doi: 10.1145/2950290.2983967
– ident: e_1_2_15_2_1
  doi: 10.1145/1095430.1081753
– ident: e_1_2_15_30_1
  doi: 10.1109/PRDC.2006.18
– ident: e_1_2_15_33_1
  doi: 10.1109/TR.2013.2285319
– ident: e_1_2_15_59_1
  doi: 10.1017/S1351324901002789
– ident: e_1_2_15_28_1
– ident: e_1_2_15_48_1
  doi: 10.1109/ISSRE.2018.00026
– ident: e_1_2_15_37_1
  doi: 10.1109/C-M.1978.218136
– ident: e_1_2_15_67_1
  doi: 10.1145/1985441.1985451
– ident: e_1_2_15_50_1
  doi: 10.1109/TR.2020.2982975
– ident: e_1_2_15_10_1
  doi: 10.1109/QRS.2017.22
– ident: e_1_2_15_18_1
  doi: 10.1109/TSE.2007.1016
– ident: e_1_2_15_32_1
  doi: 10.1145/581396.581397
– ident: e_1_2_15_14_1
  doi: 10.1109/ICSE.2017.62
– ident: e_1_2_15_46_1
  doi: 10.5840/jphil2019116724
– ident: e_1_2_15_74_1
  doi: 10.1145/2544173.2509551
– ident: e_1_2_15_55_1
– ident: e_1_2_15_20_1
  doi: 10.1109/ASE.2011.6100062
– ident: e_1_2_15_17_1
  doi: 10.1145/2786805.2786880
– ident: e_1_2_15_5_1
  doi: 10.1109/TSE.1978.231514
– ident: e_1_2_15_34_1
  doi: 10.1007/3-540-63531-9_29
– ident: e_1_2_15_19_1
  doi: 10.1145/1287624.1287632
– ident: e_1_2_15_42_1
  doi: 10.1002/9781118071953
– ident: e_1_2_15_45_1
  doi: 10.1145/2559932
– volume-title: Practical Nonparametric Statistics
  year: 1999
  ident: e_1_2_15_62_1
– ident: e_1_2_15_68_1
  doi: 10.1109/ACCESS.2020.3004145
– ident: e_1_2_15_4_1
  doi: 10.1109/ICST.2016.22
– ident: e_1_2_15_43_1
  doi: 10.1145/2610384.2628053
– ident: e_1_2_15_71_1
  doi: 10.1145/3078840
– ident: e_1_2_15_51_1
  doi: 10.1109/ICST.2017.9
– ident: e_1_2_15_60_1
  doi: 10.1109/AVSS.2011.6027363
– ident: e_1_2_15_35_1
  doi: 10.1145/277633.277647
– ident: e_1_2_15_52_1
  doi: 10.1109/ICST.2012.159
– ident: e_1_2_15_54_1
  doi: 10.1145/2610384.2628053
– ident: e_1_2_15_49_1
  doi: 10.1109/TSE.2019.2911283
– ident: e_1_2_15_12_1
  doi: 10.1109/COMPSAC.2013.139
– ident: e_1_2_15_53_1
  doi: 10.1002/stvr.1509
– ident: e_1_2_15_44_1
  doi: 10.1109/32.153381
– ident: e_1_2_15_79_1
  doi: 10.1109/SCAM52516.2021.00021
– ident: e_1_2_15_6_1
  doi: 10.1002/stvr.409
– ident: e_1_2_15_47_1
  doi: 10.1145/3092703.3092717
– ident: e_1_2_15_64_1
  doi: 10.1145/1416950.1416952
– ident: e_1_2_15_23_1
  doi: 10.1109/ASE.2013.6693093
– ident: e_1_2_15_15_1
  doi: 10.1016/j.ins.2016.04.023
– ident: e_1_2_15_25_1
  doi: 10.1007/978-3-642-39742-4_17
– start-page: 196
  volume-title: Individual Comparisons by Ranking Methods
  year: 1992
  ident: e_1_2_15_63_1
– ident: e_1_2_15_70_1
  doi: 10.1109/ICPC.2017.29
– ident: e_1_2_15_16_1
  doi: 10.1145/2931037.2931051
– ident: e_1_2_15_3_1
  doi: 10.1007/s11432-012-4746-9
– ident: e_1_2_15_8_1
  doi: 10.1109/TSE.2019.2892102
– ident: e_1_2_15_24_1
  doi: 10.1007/978-3-642-33119-0_18
– ident: e_1_2_15_40_1
  doi: 10.1109/DSA52907.2021.00016
– ident: e_1_2_15_65_1
  doi: 10.1109/ICSM.2009.5306315
– ident: e_1_2_15_38_1
  doi: 10.1007/978-1-4757-5939-6_7
– ident: e_1_2_15_36_1
  doi: 10.1145/2554850.2554978
– ident: e_1_2_15_9_1
  doi: 10.1109/ASE.2009.25
– ident: e_1_2_15_11_1
  doi: 10.1016/j.infsof.2018.03.008
– ident: e_1_2_15_22_1
  doi: 10.1109/ICSE.2012.6227210
– start-page: 193
  volume-title: Advances in Neural Information Processing Systems
  year: 2007
  ident: e_1_2_15_57_1
– ident: e_1_2_15_77_1
  doi: 10.1002/1099-1689(200009)10:3<171::AID-STVR209>3.0.CO;2-J
– ident: e_1_2_15_75_1
  doi: 10.1145/3345628
– ident: e_1_2_15_21_1
– ident: e_1_2_15_61_1
  doi: 10.1145/2365952.2365981
– ident: e_1_2_15_27_1
  doi: 10.1145/1361684.1361686
– ident: e_1_2_15_39_1
  doi: 10.1109/ICST.2014.28
– ident: e_1_2_15_80_1
  doi: 10.1016/j.cola.2021.101064
SSID ssj0011526
Score 2.3609207
Snippet Identifying the location of faults in real‐world programs is one of the costly processes during software debugging. To reduce the debugging effort, various...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1061
SubjectTerms class reduction
Debugging
Effectiveness
Empirical analysis
Fault detection
fault localization
Fault location
Faults
Information retrieval
Iterative methods
Localization
method call frequency
Mutation
program debugging
Reduction
Title CRMF: A fault localization approach based on class reduction and method call frequency
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fspe.3178
https://www.proquest.com/docview/2781135308
Volume 53
WOSCitedRecordID wos000899023800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-024X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011526
  issn: 0038-0644
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o5sGL8ydOp0QQPYV1XdOm3sa0eNAxppPdSpsmIIw6uk3wv_elSTcFBcFTS3lpS5LX73tp3vcALrnfST3hcCq4q6iXZIyGIutQxv1QhEJ6THhlsYlgMOCTSTi0uyp1LozRh1gtuGnPKL_X2sGTdN5ei4bOZxIDzoBvQt3FactqUL8dReOH1T8ERCbfiDJyisDrVdKzjtuu2n4HozXD_MpTS6CJGv95xV3YsfSS9Mx82IMNme9DoyrdQKwnH8BLf_QY3ZAeUclyuiAlotmMTFLJjBONcBnBK0JTbFJolVdjkWfElJ4m2G5KVGE2ZH8cwji6e-7fU1tigQrkBZwqFUpEMYlxovIkckGEbz9NkDgIP3NU4KFL-0wlGCVl2gpN8KwjlZ9yDE2S7hHU8rdcHgNJpUqZmzpMMK2I46aJdAKEQrw9517CmnBd9XUsrP64LoMxjY1yshtjd8W6u5pwsbKcGc2NH2xa1XDF1uvmsavTZrsMH9iEq3Jgfm0fPw3v9PHkr4ansK0rzZtNOy2oLYqlPIMt8b54nRfndu59AoKg3Ec
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7mJuiL8ydOp0YQfSrruqRL9WnoysRtjLnJ3kqbJiCMOfZD8L_30rSbgoLgU0u5tCW56_ddmnwHcMXdakSFzS3BHWXRMGaWJ-KqxbjrCU9IygRNik3Uu10-Gnm9HNxle2GMPsRqwk1HRvK91gGuJ6Qra9XQ-VRixlnnG1Cg6EXo3oWHvj9sr34iIDS5RpWRW4i8NNOetZ1K1vY7Gq0p5leimiCNX_zXO-7CTkowScN4xB7k5GQfilnxBpLG8gG83Pc7_i1pEBUuxwuSYFq6J5NkQuNEY1xM8IrQJJvMtM6rsZjExBSfJthuTNTMLMn-OISh3xzct6y0yIIlkBlwSylPIo5JzBQVlcgGEcDdKETqINzYVnWKQe0yFWKeFGsrNMGzqlRuxDE5CWtHkJ-8TeQxkEiqiDmRzQTTmjhOFEq7jmCIt-echqwEN1lnByJVINeFMMaB0U52AuyuQHdXCS5XllOjuvGDTTkbryCNu3ng6I2zNYYPLMF1MjK_tg-ee019PPmr4QVstQaddtB-7D6dwrauO2-W8JQhv5gt5RlsivfF63x2njriJ7rX4Dc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3MTcQX5ydOp0YQfSrruqRN9Wm4FcU5xnSyt9KmCQhjjn0I_ntvmnZTUBB8aik3bUl6e85tk3MALrhbj6mwuSW4oywaJczyRVK3GHd94QtJmaCp2YTX7fLh0O8V4CZfC2P0IZYf3HRmpO9rneBykqjaSjV0NpFYcXp8DUpUe8gUodTqB4PO8icCQpNrVBm5hchLc-1Z26nlbb-j0YpifiWqKdIE5X_d4zZsZQSTNM0TsQMFOd6Fcm7eQLJc3oOX2_5jcE2aREWL0ZykmJatySS50DjRGJcQPCI0ySZTrfNqIsYJMebTBNuNiJqaKdkf-zAI2s-3d1ZmsmAJZAbcUsqXiGMSK0VFJbJBBHA3jpA6CDexlUcxqV2mIqyTEh2FIbhXl8qNORYnUeMAiuO3sTwEEksVMye2mWBaE8eJI2l7CIZ4es5pxCpwlXd2KDIFcm2EMQqNdrITYneFursqcL6MnBjVjR9iqvl4hVnezUJHL5xtMLxgBS7Tkfm1ffjUa-vt0V8Dz2Cj1wrCzn334Rg2te28mcFTheJ8upAnsC7e56-z6Wn2HH4CdHjfsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRMF%3A+A+fault+localization+approach+based+on+class+reduction+and+method+call+frequency&rft.jtitle=Software%2C+practice+%26+experience&rft.au=Liu%2C+Hengyuan&rft.au=Li%2C+Zheng&rft.au=Wang%2C+Haifeng&rft.au=Liu%2C+Yong&rft.date=2023-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0038-0644&rft.eissn=1097-024X&rft.volume=53&rft.issue=4&rft.spage=1061&rft.epage=1090&rft_id=info:doi/10.1002%2Fspe.3178&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0644&client=summon