Adding Negation to Lambda Mu
We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by adding negation as a type constructor, together with syntactic constructs that represent negation introduction and elimination. We will define a notion of reduction that extends $\lambda\mu$'s reduction system with two...
Uloženo v:
| Vydáno v: | Logical methods in computer science Ročník 19, Issue 2 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Logical Methods in Computer Science e.V
25.05.2023
|
| Témata: | |
| ISSN: | 1860-5974, 1860-5974 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by
adding negation as a type constructor, together with syntactic constructs that
represent negation introduction and elimination. We will define a notion of
reduction that extends $\lambda\mu$'s reduction system with two new reduction
rules, and show that the system satisfies subject reduction. Using Aczel's
generalisation of Tait and Martin-L\"of's notion of parallel reduction, we show
that this extended reduction is confluent. Although the notion of type
assignment has its limitations with respect to representation of proofs in
natural deduction with implication and negation, we will show that all
propositions that can be shown in there have a witness in $\cal L$. Using
Girard's approach of reducibility candidates, we show that all typeable terms
are strongly normalisable, and conclude the paper by showing that type
assignment for $\cal L$ enjoys the principal typing property. |
|---|---|
| AbstractList | We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by adding negation as a type constructor, together with syntactic constructs that represent negation introduction and elimination. We will define a notion of reduction that extends $\lambda\mu$'s reduction system with two new reduction rules, and show that the system satisfies subject reduction. Using Aczel's generalisation of Tait and Martin-L\"of's notion of parallel reduction, we show that this extended reduction is confluent. Although the notion of type assignment has its limitations with respect to representation of proofs in natural deduction with implication and negation, we will show that all propositions that can be shown in there have a witness in $\cal L$. Using Girard's approach of reducibility candidates, we show that all typeable terms are strongly normalisable, and conclude the paper by showing that type assignment for $\cal L$ enjoys the principal typing property. We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by adding negation as a type constructor, together with syntactic constructs that represent negation introduction and elimination. We will define a notion of reduction that extends $\lambda\mu$'s reduction system with two new reduction rules, and show that the system satisfies subject reduction. Using Aczel's generalisation of Tait and Martin-L\"of's notion of parallel reduction, we show that this extended reduction is confluent. Although the notion of type assignment has its limitations with respect to representation of proofs in natural deduction with implication and negation, we will show that all propositions that can be shown in there have a witness in $\cal L$. Using Girard's approach of reducibility candidates, we show that all typeable terms are strongly normalisable, and conclude the paper by showing that type assignment for $\cal L$ enjoys the principal typing property. |
| Author | van Bakel, Steffen |
| Author_xml | – sequence: 1 givenname: Steffen surname: van Bakel fullname: van Bakel, Steffen |
| BookMark | eNpNkDtPwzAUhS1UJErpH0AMGWEI2NeP2GxVxaNSgQVmy4_rKFUao6QM_HvSFiHOco_u8OnoOyeTLndIyCWjt0KB0XftNgwlM9dwz-AGKPATMmVa0VKaSkz-9TMyH4YNHcM506Cm5GoRY9PVxSvWbtfkrtjlYu22Prri5euCnCbXDjj_vTPy8fjwvnwu129Pq-ViXQYAzkuNnCJi8k6LWIFKHkRCDwYMymiC8QqTqLDCcQIq6qLnSQQvJEodxi0zsjpyY3Yb-9k3W9d_2-wae3jkvrau3zWhRSuZiyKYwIQDIYPSlEoZElIMiaGWIwuOrNDnYegx_fEYtQdddq_LMmPBMrB7XfwHVJ1ezg |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.46298/lmcs-19(2:12)2023 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - NZ url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1860-5974 |
| ExternalDocumentID | oai_doaj_org_article_51ad4c9c14a245c680055cfe0ecf1e85 10_46298_lmcs_19_2_12_2023 |
| GroupedDBID | .4S .DC 29L 2WC 5GY 5VS AAFWJ AAYXX ADBBV ADMLS ADQAK AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV CITATION EBS EJD FRP GROUPED_DOAJ J9A KQ8 MK~ ML~ M~E OK1 OVT P2P TR2 TUS XSB |
| ID | FETCH-LOGICAL-c2233-8e30eeefba84d726fb24feb2929e5d9c9b6ef47e7e974e60adb3f4cb45e58c003 |
| IEDL.DBID | DOA |
| ISSN | 1860-5974 |
| IngestDate | Fri Oct 03 12:51:35 EDT 2025 Sat Nov 29 06:21:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2233-8e30eeefba84d726fb24feb2929e5d9c9b6ef47e7e974e60adb3f4cb45e58c003 |
| OpenAccessLink | https://doaj.org/article/51ad4c9c14a245c680055cfe0ecf1e85 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_51ad4c9c14a245c680055cfe0ecf1e85 crossref_primary_10_46298_lmcs_19_2_12_2023 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-25 |
| PublicationDateYYYYMMDD | 2023-05-25 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Logical methods in computer science |
| PublicationYear | 2023 |
| Publisher | Logical Methods in Computer Science e.V |
| Publisher_xml | – name: Logical Methods in Computer Science e.V |
| SSID | ssj0000331826 |
| Score | 2.269609 |
| Snippet | We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by
adding negation as a type constructor, together with syntactic constructs that... We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by adding negation as a type constructor, together with syntactic constructs that... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | computer science - logic in computer science |
| Title | Adding Negation to Lambda Mu |
| URI | https://doaj.org/article/51ad4c9c14a245c680055cfe0ecf1e85 |
| Volume | 19, Issue 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals - NZ customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1860-5974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331826 issn: 1860-5974 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwGLVQxcDCjTgKysAAQlHrK7HZCmrF0FYMgLpZPj4jJNqiHoz8dmwnRWViYclgRZH9nuL3PiV-H0KXgVNKvGV50Mp4JIeLXHBT5iU2hDvBRTsFmL70y-FQjEbyca3VV_wnrIoHroBrcawds9JipgnjthAxNcp6aIP1GERKLw2uZ62YSnswpdE4V6dkWEGkaL2P7TzH8orcYnIdm4b_UqK1wP6kLL1dtF1bwqxTTWUPbcBkH-2s2i1k9dt3gJodF4UmG8JrgjNbTLO-Hhuns8HyED33uk_3D3nd3CC3QZFpLoC2AcAbLZgrSeENYT6UucGuAHfSSlOAZyWUEBw_FG3tDPXMGsaBCxsWeIQak-kEjlGmAw1E6hIAx7QXqbVkFLiU1oVqCNMTdLNaqPqoMixU8P4JFhVhUVgqojBREZYTdBex-Lkz5k-ngcCKqllRf7Fy-h8POUNbcULxWz3hTdRYzJZwjjbt5-JtPrtIhIfr4Kv7DfNorrM |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adding+Negation+to+Lambda+Mu&rft.jtitle=Logical+methods+in+computer+science&rft.au=Steffen+van+Bakel&rft.date=2023-05-25&rft.pub=Logical+Methods+in+Computer+Science+e.V&rft.eissn=1860-5974&rft.volume=19%2C+Issue+2&rft_id=info:doi/10.46298%2Flmcs-19%282%3A12%292023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_51ad4c9c14a245c680055cfe0ecf1e85 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon |