Adding Negation to Lambda Mu

We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by adding negation as a type constructor, together with syntactic constructs that represent negation introduction and elimination. We will define a notion of reduction that extends $\lambda\mu$'s reduction system with two...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 19, Issue 2
Hlavní autor: van Bakel, Steffen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science e.V 25.05.2023
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by adding negation as a type constructor, together with syntactic constructs that represent negation introduction and elimination. We will define a notion of reduction that extends $\lambda\mu$'s reduction system with two new reduction rules, and show that the system satisfies subject reduction. Using Aczel's generalisation of Tait and Martin-L\"of's notion of parallel reduction, we show that this extended reduction is confluent. Although the notion of type assignment has its limitations with respect to representation of proofs in natural deduction with implication and negation, we will show that all propositions that can be shown in there have a witness in $\cal L$. Using Girard's approach of reducibility candidates, we show that all typeable terms are strongly normalisable, and conclude the paper by showing that type assignment for $\cal L$ enjoys the principal typing property.
AbstractList We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by adding negation as a type constructor, together with syntactic constructs that represent negation introduction and elimination. We will define a notion of reduction that extends $\lambda\mu$'s reduction system with two new reduction rules, and show that the system satisfies subject reduction. Using Aczel's generalisation of Tait and Martin-L\"of's notion of parallel reduction, we show that this extended reduction is confluent. Although the notion of type assignment has its limitations with respect to representation of proofs in natural deduction with implication and negation, we will show that all propositions that can be shown in there have a witness in $\cal L$. Using Girard's approach of reducibility candidates, we show that all typeable terms are strongly normalisable, and conclude the paper by showing that type assignment for $\cal L$ enjoys the principal typing property.
We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by adding negation as a type constructor, together with syntactic constructs that represent negation introduction and elimination. We will define a notion of reduction that extends $\lambda\mu$'s reduction system with two new reduction rules, and show that the system satisfies subject reduction. Using Aczel's generalisation of Tait and Martin-L\"of's notion of parallel reduction, we show that this extended reduction is confluent. Although the notion of type assignment has its limitations with respect to representation of proofs in natural deduction with implication and negation, we will show that all propositions that can be shown in there have a witness in $\cal L$. Using Girard's approach of reducibility candidates, we show that all typeable terms are strongly normalisable, and conclude the paper by showing that type assignment for $\cal L$ enjoys the principal typing property.
Author van Bakel, Steffen
Author_xml – sequence: 1
  givenname: Steffen
  surname: van Bakel
  fullname: van Bakel, Steffen
BookMark eNpNkDtPwzAUhS1UJErpH0AMGWEI2NeP2GxVxaNSgQVmy4_rKFUao6QM_HvSFiHOco_u8OnoOyeTLndIyCWjt0KB0XftNgwlM9dwz-AGKPATMmVa0VKaSkz-9TMyH4YNHcM506Cm5GoRY9PVxSvWbtfkrtjlYu22Prri5euCnCbXDjj_vTPy8fjwvnwu129Pq-ViXQYAzkuNnCJi8k6LWIFKHkRCDwYMymiC8QqTqLDCcQIq6qLnSQQvJEodxi0zsjpyY3Yb-9k3W9d_2-wae3jkvrau3zWhRSuZiyKYwIQDIYPSlEoZElIMiaGWIwuOrNDnYegx_fEYtQdddq_LMmPBMrB7XfwHVJ1ezg
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.46298/lmcs-19(2:12)2023
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_51ad4c9c14a245c680055cfe0ecf1e85
10_46298_lmcs_19_2_12_2023
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
ID FETCH-LOGICAL-c2233-8e30eeefba84d726fb24feb2929e5d9c9b6ef47e7e974e60adb3f4cb45e58c003
IEDL.DBID DOA
ISSN 1860-5974
IngestDate Fri Oct 03 12:51:35 EDT 2025
Sat Nov 29 06:21:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2233-8e30eeefba84d726fb24feb2929e5d9c9b6ef47e7e974e60adb3f4cb45e58c003
OpenAccessLink https://doaj.org/article/51ad4c9c14a245c680055cfe0ecf1e85
ParticipantIDs doaj_primary_oai_doaj_org_article_51ad4c9c14a245c680055cfe0ecf1e85
crossref_primary_10_46298_lmcs_19_2_12_2023
PublicationCentury 2000
PublicationDate 2023-05-25
PublicationDateYYYYMMDD 2023-05-25
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-25
  day: 25
PublicationDecade 2020
PublicationTitle Logical methods in computer science
PublicationYear 2023
Publisher Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 2.269609
Snippet We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by adding negation as a type constructor, together with syntactic constructs that...
We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by adding negation as a type constructor, together with syntactic constructs that...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms computer science - logic in computer science
Title Adding Negation to Lambda Mu
URI https://doaj.org/article/51ad4c9c14a245c680055cfe0ecf1e85
Volume 19, Issue 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals - NZ
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwGLVQxcDCjTgKysAAQlHrK7HZCmrF0FYMgLpZPj4jJNqiHoz8dmwnRWViYclgRZH9nuL3PiV-H0KXgVNKvGV50Mp4JIeLXHBT5iU2hDvBRTsFmL70y-FQjEbyca3VV_wnrIoHroBrcawds9JipgnjthAxNcp6aIP1GERKLw2uZ62YSnswpdE4V6dkWEGkaL2P7TzH8orcYnIdm4b_UqK1wP6kLL1dtF1bwqxTTWUPbcBkH-2s2i1k9dt3gJodF4UmG8JrgjNbTLO-Hhuns8HyED33uk_3D3nd3CC3QZFpLoC2AcAbLZgrSeENYT6UucGuAHfSSlOAZyWUEBw_FG3tDPXMGsaBCxsWeIQak-kEjlGmAw1E6hIAx7QXqbVkFLiU1oVqCNMTdLNaqPqoMixU8P4JFhVhUVgqojBREZYTdBex-Lkz5k-ngcCKqllRf7Fy-h8POUNbcULxWz3hTdRYzJZwjjbt5-JtPrtIhIfr4Kv7DfNorrM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adding+Negation+to+Lambda+Mu&rft.jtitle=Logical+methods+in+computer+science&rft.au=Steffen+van+Bakel&rft.date=2023-05-25&rft.pub=Logical+Methods+in+Computer+Science+e.V&rft.eissn=1860-5974&rft.volume=19%2C+Issue+2&rft_id=info:doi/10.46298%2Flmcs-19%282%3A12%292023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_51ad4c9c14a245c680055cfe0ecf1e85
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon