Efficient persistence landscape generation

Using topological summary tools such as persistence landscapes have greatly enhanced the practical usage of topological data analysis to analyze large-scale, noisy, and complex datasets. A central element of persistence landscape usage involves computing the top- k landscapes. This article presents...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algorithms & computational technology Vol. 19
Main Authors: Henderson, Taylor, Simon, Robert
Format: Journal Article
Language:English
Published: SAGE Publishing 01.06.2025
ISSN:1748-3018, 1748-3026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Using topological summary tools such as persistence landscapes have greatly enhanced the practical usage of topological data analysis to analyze large-scale, noisy, and complex datasets. A central element of persistence landscape usage involves computing the top- k landscapes. This article presents a novel output-sensitive plane sweep algorithm for computing the top- k persistence landscapes in optimal time and space: significantly outperforming previous algorithms. Our algorithm can determine in optimal O ( n * log ( n ) ) if a given birth-death pair appears in the top- k landscapes. The runtime performance of the approach on a botnet dataset and several synthetically generated point cloud topologies, showing that the algorithm can achieve significant speedups for these datasets due to its better algorithmic design. The speedups seen range from slightly worse (in some extreme examples) to equal compared to previous works while returning exactly the same output and is significantly faster when filtering is used (15x for birth-death pairs when removing 75% of birth-death pairs). Filtering is shown to maintain machine learning performance on both synthetically generated and real world datasets while providing orders of magnitude speedup depending on how intensive of filtering is done. Due to the introduced algorithm’s algorithmic design, the speedup seen is greater when filtering using the introduced birth-death filtering algorithm. The software is freely provided in Rust with Python bindings online.
AbstractList Using topological summary tools such as persistence landscapes have greatly enhanced the practical usage of topological data analysis to analyze large-scale, noisy, and complex datasets. A central element of persistence landscape usage involves computing the top- k landscapes. This article presents a novel output-sensitive plane sweep algorithm for computing the top- k persistence landscapes in optimal time and space: significantly outperforming previous algorithms. Our algorithm can determine in optimal O ( n * log ( n ) ) if a given birth-death pair appears in the top- k landscapes. The runtime performance of the approach on a botnet dataset and several synthetically generated point cloud topologies, showing that the algorithm can achieve significant speedups for these datasets due to its better algorithmic design. The speedups seen range from slightly worse (in some extreme examples) to equal compared to previous works while returning exactly the same output and is significantly faster when filtering is used (15x for birth-death pairs when removing 75% of birth-death pairs). Filtering is shown to maintain machine learning performance on both synthetically generated and real world datasets while providing orders of magnitude speedup depending on how intensive of filtering is done. Due to the introduced algorithm’s algorithmic design, the speedup seen is greater when filtering using the introduced birth-death filtering algorithm. The software is freely provided in Rust with Python bindings online.
Author Henderson, Taylor
Simon, Robert
Author_xml – sequence: 1
  givenname: Taylor
  orcidid: 0000-0002-3872-9994
  surname: Henderson
  fullname: Henderson, Taylor
  organization: Department of Computer Science, George Mason University, Fairfax, VA, USA
– sequence: 2
  givenname: Robert
  surname: Simon
  fullname: Simon, Robert
  organization: Department of Computer Science, George Mason University, Fairfax, VA, USA
BookMark eNplkEFLAzEQhYNUsNb-AG89C6uZJJtkj1KqFgpe9BymyaSk1GxJ9uK_d2ulF-fyhu_wPXi3bJL7TIzdA38EMOYJjLKSCy1akMrwDq7Y9MSaE5xcfrA3bF7rno8nhbEgp-xhFWPyifKwOFKpqQ6UPS0OmEP1eKTFjjIVHFKf79h1xEOl-V_O2OfL6mP51mzeX9fL503jhZDQGBKkWgC0Y43ahsitjqBJUxd5h8DJahUCjDzqrY7CaBuFjSg72HYc5Yytz97Q494dS_rC8u16TO4X9GXnsAzJH8hFMDyQaFsDQvmuszagl1rh2C6R5OiCs8uXvtZC8eID7k7buX_byR8PYmDZ
Cites_doi 10.1214/15-AOAS886
10.1088/0266-5611/27/12/124003
10.1016/j.physa.2019.123843
10.1016/j.jnca.2019.102479
10.1016/j.jsc.2016.03.009
10.1063/1.4978997
10.1140/epjds/s13688-017-0109-5
10.1016/j.physa.2017.09.028
10.1007/978-3-540-77974-2
10.1007/s00454-002-2885-2
10.1109/ICMLA.2019.00255
10.1038/ncomms15396
10.21105/joss.00925
10.1016/j.cag.2021.10.022
10.1109/CNS.2014.6997492
10.1007/s00454-004-1146-y
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1177/17483026251347091
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1748-3026
ExternalDocumentID oai_doaj_org_article_f170de2557124c9988dac364a1a83ae3
10_1177_17483026251347091
GroupedDBID .4S
.DC
0R~
29J
4.4
54M
5GY
5VS
8G5
AAJPV
AAOTM
AATZT
AAYXX
ABAWP
ABQXT
ABUWG
ACDXX
ACGFS
ACHEB
ACROE
ADBBV
ADEBD
ADMLS
ADOGD
AEDFJ
AEWDL
AFCOW
AFFHD
AFKRA
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
AUTPY
AYAKG
AZQEC
BCNDV
BDDNI
BENPR
BPHCQ
CCPQU
CITATION
CKLRP
CS3
DWQXO
EBS
EDO
EJD
F5P
GNUQQ
GROUPED_DOAJ
GUQSH
H13
IL9
IPNFZ
J8X
J9A
K.F
KQ8
M2O
MET
MK~
MV1
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
RIG
ROL
SAUOL
SCDPB
SCNPE
SFC
AASGM
ID FETCH-LOGICAL-c2231-7e2e4511a80004bdf086f16e6e9f09a10e864dd1f08f6b6f2768f28fa391b90a3
IEDL.DBID DOA
ISSN 1748-3018
IngestDate Fri Oct 03 12:44:52 EDT 2025
Sat Nov 29 07:51:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2231-7e2e4511a80004bdf086f16e6e9f09a10e864dd1f08f6b6f2768f28fa391b90a3
ORCID 0000-0002-3872-9994
OpenAccessLink https://doaj.org/article/f170de2557124c9988dac364a1a83ae3
ParticipantIDs doaj_primary_oai_doaj_org_article_f170de2557124c9988dac364a1a83ae3
crossref_primary_10_1177_17483026251347091
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of algorithms & computational technology
PublicationYear 2025
Publisher SAGE Publishing
Publisher_xml – name: SAGE Publishing
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
Bubenik P (e_1_3_2_7_2) 2015; 16
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
Adams H (e_1_3_2_16_2) 2017; 18
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
Homayoun S (e_1_3_2_29_2) 2018
References_xml – ident: e_1_3_2_18_2
– ident: e_1_3_2_12_2
  doi: 10.1214/15-AOAS886
– ident: e_1_3_2_22_2
  doi: 10.1088/0266-5611/27/12/124003
– volume: 18
  start-page: 1
  year: 2017
  ident: e_1_3_2_16_2
  article-title: Persistence images: a stable vector representation of persistent homology
  publication-title: J Mach Learn Res
– ident: e_1_3_2_4_2
  doi: 10.1016/j.physa.2019.123843
– ident: e_1_3_2_25_2
  doi: 10.1016/j.jnca.2019.102479
– volume: 16
  start-page: 77
  year: 2015
  ident: e_1_3_2_7_2
  article-title: Statistical topological data analysis using persistence landscapes
  publication-title: J Mach Learn Res
– ident: e_1_3_2_9_2
  doi: 10.1016/j.jsc.2016.03.009
– ident: e_1_3_2_11_2
– ident: e_1_3_2_15_2
  doi: 10.1063/1.4978997
– ident: e_1_3_2_26_2
  doi: 10.1140/epjds/s13688-017-0109-5
– ident: e_1_3_2_3_2
  doi: 10.1016/j.physa.2017.09.028
– ident: e_1_3_2_23_2
  doi: 10.1007/978-3-540-77974-2
– ident: e_1_3_2_5_2
  doi: 10.1007/s00454-002-2885-2
– ident: e_1_3_2_8_2
  doi: 10.1109/ICMLA.2019.00255
– ident: e_1_3_2_14_2
  doi: 10.1038/ncomms15396
– ident: e_1_3_2_17_2
– ident: e_1_3_2_27_2
  doi: 10.21105/joss.00925
– ident: e_1_3_2_20_2
  doi: 10.1016/j.cag.2021.10.022
– ident: e_1_3_2_24_2
– ident: e_1_3_2_10_2
– ident: e_1_3_2_19_2
– ident: e_1_3_2_13_2
– ident: e_1_3_2_21_2
– ident: e_1_3_2_28_2
  doi: 10.1109/CNS.2014.6997492
– ident: e_1_3_2_2_2
– ident: e_1_3_2_6_2
  doi: 10.1007/s00454-004-1146-y
– volume-title: BoTShark: a deep learning approach for botnet traffic detection
  year: 2018
  ident: e_1_3_2_29_2
SSID ssj0000327813
Score 2.307158
Snippet Using topological summary tools such as persistence landscapes have greatly enhanced the practical usage of topological data analysis to analyze large-scale,...
SourceID doaj
crossref
SourceType Open Website
Index Database
Title Efficient persistence landscape generation
URI https://doaj.org/article/f170de2557124c9988dac364a1a83ae3
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: BENPR
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: PIMPY
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1748-3026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327813
  issn: 1748-3018
  databaseCode: M2O
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ27T8MwEMZPqDDAgHiK8qgyMFWKsOPUjxFQK5Bo1QFQmSI_zoilVG3h78d2QlXEwMKSwUqi5E7K951j_w7gMhQNJSLjuRfW5qUKB2PR5c4ZZEil6aWmfc8PYjSSk4kar7X6imvCajxwHbgrTwVxGIyvCEpkQ3EgnbaMl5pqyTQmzicRaq2YSt9gVghJWfMbMxKWgvOOqKtg9-PmSaLoDyFa4_UnYRnswW7jCLPr-kn2YQOnB7AzXOFUF4fQ7SfQQ9CHbBbntxbJ6GZpm25cwJS9Jnh0jPERPA36j7d3edPkILdBmWkusMDICNMy2ivjfKgxPOXIUXmiNCUoeekcDeOeG-6LUB_4QnrNFDWKaHYMren7FE8gKwhDT401XJAyXGN08ANeaCN0Yakv29D9fuNqVrMsKtrgvn-Fpw03MSarEyOGOg2E5FRNcqq_knP6Hzc5g-0iNt1NUx_n0FrOP_ACtuzn8m0x76S8d2BzfD8cv3wB-P2xkg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+persistence+landscape+generation&rft.jtitle=Journal+of+algorithms+%26+computational+technology&rft.au=Taylor+Henderson&rft.au=Robert+Simon&rft.date=2025-06-01&rft.pub=SAGE+Publishing&rft.eissn=1748-3026&rft.volume=19&rft_id=info:doi/10.1177%2F17483026251347091&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f170de2557124c9988dac364a1a83ae3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3018&client=summon