Efficient persistence landscape generation
Using topological summary tools such as persistence landscapes have greatly enhanced the practical usage of topological data analysis to analyze large-scale, noisy, and complex datasets. A central element of persistence landscape usage involves computing the top- k landscapes. This article presents...
Saved in:
| Published in: | Journal of algorithms & computational technology Vol. 19 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
SAGE Publishing
01.06.2025
|
| ISSN: | 1748-3018, 1748-3026 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Using topological summary tools such as persistence landscapes have greatly enhanced the practical usage of topological data analysis to analyze large-scale, noisy, and complex datasets. A central element of persistence landscape usage involves computing the top- k landscapes. This article presents a novel output-sensitive plane sweep algorithm for computing the top- k persistence landscapes in optimal time and space: significantly outperforming previous algorithms. Our algorithm can determine in optimal O ( n * log ( n ) ) if a given birth-death pair appears in the top- k landscapes. The runtime performance of the approach on a botnet dataset and several synthetically generated point cloud topologies, showing that the algorithm can achieve significant speedups for these datasets due to its better algorithmic design. The speedups seen range from slightly worse (in some extreme examples) to equal compared to previous works while returning exactly the same output and is significantly faster when filtering is used (15x for birth-death pairs when removing 75% of birth-death pairs). Filtering is shown to maintain machine learning performance on both synthetically generated and real world datasets while providing orders of magnitude speedup depending on how intensive of filtering is done. Due to the introduced algorithm’s algorithmic design, the speedup seen is greater when filtering using the introduced birth-death filtering algorithm. The software is freely provided in Rust with Python bindings online. |
|---|---|
| AbstractList | Using topological summary tools such as persistence landscapes have greatly enhanced the practical usage of topological data analysis to analyze large-scale, noisy, and complex datasets. A central element of persistence landscape usage involves computing the top- k landscapes. This article presents a novel output-sensitive plane sweep algorithm for computing the top- k persistence landscapes in optimal time and space: significantly outperforming previous algorithms. Our algorithm can determine in optimal O ( n * log ( n ) ) if a given birth-death pair appears in the top- k landscapes. The runtime performance of the approach on a botnet dataset and several synthetically generated point cloud topologies, showing that the algorithm can achieve significant speedups for these datasets due to its better algorithmic design. The speedups seen range from slightly worse (in some extreme examples) to equal compared to previous works while returning exactly the same output and is significantly faster when filtering is used (15x for birth-death pairs when removing 75% of birth-death pairs). Filtering is shown to maintain machine learning performance on both synthetically generated and real world datasets while providing orders of magnitude speedup depending on how intensive of filtering is done. Due to the introduced algorithm’s algorithmic design, the speedup seen is greater when filtering using the introduced birth-death filtering algorithm. The software is freely provided in Rust with Python bindings online. |
| Author | Henderson, Taylor Simon, Robert |
| Author_xml | – sequence: 1 givenname: Taylor orcidid: 0000-0002-3872-9994 surname: Henderson fullname: Henderson, Taylor organization: Department of Computer Science, George Mason University, Fairfax, VA, USA – sequence: 2 givenname: Robert surname: Simon fullname: Simon, Robert organization: Department of Computer Science, George Mason University, Fairfax, VA, USA |
| BookMark | eNplkEFLAzEQhYNUsNb-AG89C6uZJJtkj1KqFgpe9BymyaSk1GxJ9uK_d2ulF-fyhu_wPXi3bJL7TIzdA38EMOYJjLKSCy1akMrwDq7Y9MSaE5xcfrA3bF7rno8nhbEgp-xhFWPyifKwOFKpqQ6UPS0OmEP1eKTFjjIVHFKf79h1xEOl-V_O2OfL6mP51mzeX9fL503jhZDQGBKkWgC0Y43ahsitjqBJUxd5h8DJahUCjDzqrY7CaBuFjSg72HYc5Yytz97Q494dS_rC8u16TO4X9GXnsAzJH8hFMDyQaFsDQvmuszagl1rh2C6R5OiCs8uXvtZC8eID7k7buX_byR8PYmDZ |
| Cites_doi | 10.1214/15-AOAS886 10.1088/0266-5611/27/12/124003 10.1016/j.physa.2019.123843 10.1016/j.jnca.2019.102479 10.1016/j.jsc.2016.03.009 10.1063/1.4978997 10.1140/epjds/s13688-017-0109-5 10.1016/j.physa.2017.09.028 10.1007/978-3-540-77974-2 10.1007/s00454-002-2885-2 10.1109/ICMLA.2019.00255 10.1038/ncomms15396 10.21105/joss.00925 10.1016/j.cag.2021.10.022 10.1109/CNS.2014.6997492 10.1007/s00454-004-1146-y |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1177/17483026251347091 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1748-3026 |
| ExternalDocumentID | oai_doaj_org_article_f170de2557124c9988dac364a1a83ae3 10_1177_17483026251347091 |
| GroupedDBID | .4S .DC 0R~ 29J 4.4 54M 5GY 5VS 8G5 AAJPV AAOTM AATZT AAYXX ABAWP ABQXT ABUWG ACDXX ACGFS ACHEB ACROE ADBBV ADEBD ADMLS ADOGD AEDFJ AEWDL AFCOW AFFHD AFKRA AFKRG AFRWT AJUZI ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS AUTPY AYAKG AZQEC BCNDV BDDNI BENPR BPHCQ CCPQU CITATION CKLRP CS3 DWQXO EBS EDO EJD F5P GNUQQ GROUPED_DOAJ GUQSH H13 IL9 IPNFZ J8X J9A K.F KQ8 M2O MET MK~ MV1 O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ RIG ROL SAUOL SCDPB SCNPE SFC AASGM |
| ID | FETCH-LOGICAL-c2231-7e2e4511a80004bdf086f16e6e9f09a10e864dd1f08f6b6f2768f28fa391b90a3 |
| IEDL.DBID | DOA |
| ISSN | 1748-3018 |
| IngestDate | Fri Oct 03 12:44:52 EDT 2025 Sat Nov 29 07:51:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2231-7e2e4511a80004bdf086f16e6e9f09a10e864dd1f08f6b6f2768f28fa391b90a3 |
| ORCID | 0000-0002-3872-9994 |
| OpenAccessLink | https://doaj.org/article/f170de2557124c9988dac364a1a83ae3 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f170de2557124c9988dac364a1a83ae3 crossref_primary_10_1177_17483026251347091 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of algorithms & computational technology |
| PublicationYear | 2025 |
| Publisher | SAGE Publishing |
| Publisher_xml | – name: SAGE Publishing |
| References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 Bubenik P (e_1_3_2_7_2) 2015; 16 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 Adams H (e_1_3_2_16_2) 2017; 18 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 Homayoun S (e_1_3_2_29_2) 2018 |
| References_xml | – ident: e_1_3_2_18_2 – ident: e_1_3_2_12_2 doi: 10.1214/15-AOAS886 – ident: e_1_3_2_22_2 doi: 10.1088/0266-5611/27/12/124003 – volume: 18 start-page: 1 year: 2017 ident: e_1_3_2_16_2 article-title: Persistence images: a stable vector representation of persistent homology publication-title: J Mach Learn Res – ident: e_1_3_2_4_2 doi: 10.1016/j.physa.2019.123843 – ident: e_1_3_2_25_2 doi: 10.1016/j.jnca.2019.102479 – volume: 16 start-page: 77 year: 2015 ident: e_1_3_2_7_2 article-title: Statistical topological data analysis using persistence landscapes publication-title: J Mach Learn Res – ident: e_1_3_2_9_2 doi: 10.1016/j.jsc.2016.03.009 – ident: e_1_3_2_11_2 – ident: e_1_3_2_15_2 doi: 10.1063/1.4978997 – ident: e_1_3_2_26_2 doi: 10.1140/epjds/s13688-017-0109-5 – ident: e_1_3_2_3_2 doi: 10.1016/j.physa.2017.09.028 – ident: e_1_3_2_23_2 doi: 10.1007/978-3-540-77974-2 – ident: e_1_3_2_5_2 doi: 10.1007/s00454-002-2885-2 – ident: e_1_3_2_8_2 doi: 10.1109/ICMLA.2019.00255 – ident: e_1_3_2_14_2 doi: 10.1038/ncomms15396 – ident: e_1_3_2_17_2 – ident: e_1_3_2_27_2 doi: 10.21105/joss.00925 – ident: e_1_3_2_20_2 doi: 10.1016/j.cag.2021.10.022 – ident: e_1_3_2_24_2 – ident: e_1_3_2_10_2 – ident: e_1_3_2_19_2 – ident: e_1_3_2_13_2 – ident: e_1_3_2_21_2 – ident: e_1_3_2_28_2 doi: 10.1109/CNS.2014.6997492 – ident: e_1_3_2_2_2 – ident: e_1_3_2_6_2 doi: 10.1007/s00454-004-1146-y – volume-title: BoTShark: a deep learning approach for botnet traffic detection year: 2018 ident: e_1_3_2_29_2 |
| SSID | ssj0000327813 |
| Score | 2.307158 |
| Snippet | Using topological summary tools such as persistence landscapes have greatly enhanced the practical usage of topological data analysis to analyze large-scale,... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| Title | Efficient persistence landscape generation |
| URI | https://doaj.org/article/f170de2557124c9988dac364a1a83ae3 |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1748-3026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327813 issn: 1748-3018 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1748-3026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327813 issn: 1748-3018 databaseCode: BENPR dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1748-3026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327813 issn: 1748-3018 databaseCode: PIMPY dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1748-3026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327813 issn: 1748-3018 databaseCode: M2O dateStart: 20160301 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ27T8MwEMZPqDDAgHiK8qgyMFWKsOPUjxFQK5Bo1QFQmSI_zoilVG3h78d2QlXEwMKSwUqi5E7K951j_w7gMhQNJSLjuRfW5qUKB2PR5c4ZZEil6aWmfc8PYjSSk4kar7X6imvCajxwHbgrTwVxGIyvCEpkQ3EgnbaMl5pqyTQmzicRaq2YSt9gVghJWfMbMxKWgvOOqKtg9-PmSaLoDyFa4_UnYRnswW7jCLPr-kn2YQOnB7AzXOFUF4fQ7SfQQ9CHbBbntxbJ6GZpm25cwJS9Jnh0jPERPA36j7d3edPkILdBmWkusMDICNMy2ivjfKgxPOXIUXmiNCUoeekcDeOeG-6LUB_4QnrNFDWKaHYMren7FE8gKwhDT401XJAyXGN08ANeaCN0Yakv29D9fuNqVrMsKtrgvn-Fpw03MSarEyOGOg2E5FRNcqq_knP6Hzc5g-0iNt1NUx_n0FrOP_ACtuzn8m0x76S8d2BzfD8cv3wB-P2xkg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+persistence+landscape+generation&rft.jtitle=Journal+of+algorithms+%26+computational+technology&rft.au=Taylor+Henderson&rft.au=Robert+Simon&rft.date=2025-06-01&rft.pub=SAGE+Publishing&rft.eissn=1748-3026&rft.volume=19&rft_id=info:doi/10.1177%2F17483026251347091&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f170de2557124c9988dac364a1a83ae3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3018&client=summon |