A data‐driven bond‐based peridynamic model derived from group method of data handling neural network with genetic algorithm

In the governing equation of motion of bond‐based peridynamics, the acceleration of a material point can be considered as the response function of all the displacements of material points in the horizon and a micro stiffness containing Young's modulus and length scale. A group method of data ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering Jg. 123; H. 22; S. 5618 - 5651
Hauptverfasser: Yu, Xiang‐Long, Zhou, Xiao‐Ping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 30.11.2022
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0029-5981, 1097-0207
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the governing equation of motion of bond‐based peridynamics, the acceleration of a material point can be considered as the response function of all the displacements of material points in the horizon and a micro stiffness containing Young's modulus and length scale. A group method of data handling (GMDH) neural network is first developed to explicitly derive the discrete bond‐based peridynamic equation of motion based on measured data in this study rather than traditional complicated mathematical derivation. In order to discover the optimal structure more efficiently and to avoid exhaustive search, genetic algorithm is incorporated into GMDH structure. It is found that the prediction results obtained by GMDH model agree well with measured values both for training and testing data. Moreover, the derived equation of motion is expressed as the product of parameter composed of Young's modulus and length scale and linear combination of displacements of material points in the horizon, which is in accordance with the original bond‐based peridynamic formulation. Furthermore, numerical benchmarks associated with elastic deformation and crack problems are performed and compared with analytical solution or finite element analysis result to verify the validity and feasibility of the proposed model.
AbstractList In the governing equation of motion of bond‐based peridynamics, the acceleration of a material point can be considered as the response function of all the displacements of material points in the horizon and a micro stiffness containing Young's modulus and length scale. A group method of data handling (GMDH) neural network is first developed to explicitly derive the discrete bond‐based peridynamic equation of motion based on measured data in this study rather than traditional complicated mathematical derivation. In order to discover the optimal structure more efficiently and to avoid exhaustive search, genetic algorithm is incorporated into GMDH structure. It is found that the prediction results obtained by GMDH model agree well with measured values both for training and testing data. Moreover, the derived equation of motion is expressed as the product of parameter composed of Young's modulus and length scale and linear combination of displacements of material points in the horizon, which is in accordance with the original bond‐based peridynamic formulation. Furthermore, numerical benchmarks associated with elastic deformation and crack problems are performed and compared with analytical solution or finite element analysis result to verify the validity and feasibility of the proposed model.
Author Zhou, Xiao‐Ping
Yu, Xiang‐Long
Author_xml – sequence: 1
  givenname: Xiang‐Long
  surname: Yu
  fullname: Yu, Xiang‐Long
  organization: Chongqing University
– sequence: 2
  givenname: Xiao‐Ping
  orcidid: 0000-0003-1551-6504
  surname: Zhou
  fullname: Zhou, Xiao‐Ping
  email: xiao_ping_zhou@126.com
  organization: Chongqing University
BookMark eNp1kE1OwzAQhS1UJNqCxBEssWGTYjtxEy-rqvxIBTawjpyMk7okdnASqq7gCJyRk-C2rBCsRm_me2-kN0IDY41C6JySCSWEXZlaTWKS0CM0pETEAWEkHqChP4mAi4SeoFHbrgmhlJNwiN5nGGQnvz4-wek3ZXBmDXiVyVYBbpTTsDWy1jmuLagKg9phgAtna1w62ze4Vt3KArbFPgmvpIFKmxIb1TtZ-dFtrHvBG92tcKm89GGyKq3zi_oUHReyatXZzxyj5-vF0_w2WD7e3M1nyyBnLKTBNAojBhAnAJLExZRlHLIkyYVKOGGZZJxRoIJGUoqo4EAUi2JeMDEFIvMEwjG6OOQ2zr72qu3Ste2d8S9TFjMexpxy4anJgcqdbVunijTXney0NZ2TukopSXclp77kdFeyN1z-MjRO19Jt_0KDA7rRldr-y6UP94s9_w3iKpDN
CitedBy_id crossref_primary_10_1016_j_cma_2024_117226
crossref_primary_10_1007_s00466_023_02365_0
crossref_primary_10_1016_j_ijmecsci_2024_109234
crossref_primary_10_1016_j_cma_2024_117268
crossref_primary_10_1016_j_compstruc_2024_107395
crossref_primary_10_1016_j_tafmec_2023_103980
crossref_primary_10_3390_math11061381
crossref_primary_10_1016_j_enganabound_2024_01_004
crossref_primary_10_1016_j_enganabound_2023_08_028
crossref_primary_10_1002_nme_7296
Cites_doi 10.1016/j.ijfatigue.2020.105886
10.1016/j.asoc.2021.108241
10.1016/j.acme.2016.11.005
10.1016/j.engfracmech.2021.107944
10.1016/j.compstruct.2015.07.047
10.1016/j.eng.2020.02.016
10.1016/j.engfracmech.2020.107463
10.1016/j.engfracmech.2021.107890
10.1016/j.cma.2021.114039
10.1016/j.cma.2012.01.016
10.1016/S0065‐2156(10)44002‐8
10.1016/j.engfracmech.2010.11.020
10.1016/j.engfracmech.2021.107750
10.1016/j.cam.2009.06.008
10.1016/S0924‐0136(02)00264‐9
10.1016/j.tafmec.2020.102573
10.1016/S0020‐0255(02)00175‐5
10.1002/nme.6764
10.1016/j.asoc.2015.02.003
10.1007/978-1-4614-8465-3
10.1016/j.engfracmech.2020.107179
10.1016/j.compstruct.2020.112403
10.1109/DSMP.2016.7583574
10.1007/s00466‐017‐1469‐1
10.1007/s00466‐020‐01824‐2
10.1007/s10659‐007‐9125‐1
10.1007/s10064‐018‐1349‐8
10.1016/j.cma.2021.114062
10.1016/j.amc.2017.06.012
10.1016/S0022‐5096(99)00029‐0
10.1002/nme.5257
10.1016/j.cma.2021.113927
10.1007/s00521‐017‐3109‐2
10.1111/ffe.13523
10.1016/j.compstruct.2019.111739
10.1007/s10704‐015‐0056‐8
10.1016/j.cma.2021.114400
10.1007/s10704‐018‐0273‐z
10.1002/nme.1652
10.1016/S0045‐7825(99)00389‐8
10.1007/s00366‐021‐01527‐z
10.1016/j.compstruc.2004.11.026
10.1016/j.cma.2021.114096
10.1016/j.euromechsol.2016.08.009
10.1007/BF01157550
10.1016/j.engfracmech.2019.106498
10.1016/j.engfracmech.2021.108036
10.1016/j.jhydrol.2020.125423
10.1002/nme.5596
10.1007/BF01152313
10.1007/s10704‐010‐9442‐4
10.1016/j.cma.2020.113553
10.1007/BF00175354
10.1016/j.jcp.2020.109760
10.1016/j.commatsci.2010.05.050
10.1016/j.asoc.2020.106904
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.7081
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 5651
ExternalDocumentID 10_1002_nme_7081
NME7081
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2231-64342dd78dda07f62b5db88c9e8502ba2521d1914aa94f5d0e2475f296d0ac8d3
IEDL.DBID DRFUL
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000868829300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 25 12:15:36 EDT 2025
Tue Nov 18 21:01:53 EST 2025
Sat Nov 29 06:44:02 EST 2025
Wed Jan 22 16:22:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2231-64342dd78dda07f62b5db88c9e8502ba2521d1914aa94f5d0e2475f296d0ac8d3
Notes Funding information
National Natural Science Foundation of China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1551-6504
PQID 2725375159
PQPubID 996376
PageCount 34
ParticipantIDs proquest_journals_2725375159
crossref_citationtrail_10_1002_nme_7081
crossref_primary_10_1002_nme_7081
wiley_primary_10_1002_nme_7081_NME7081
PublicationCentury 2000
PublicationDate 30 November 2022
PublicationDateYYYYMMDD 2022-11-30
PublicationDate_xml – month: 11
  year: 2022
  text: 30 November 2022
  day: 30
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2000; 48
1984; 26
2016; 108
2021; 249
2015; 30
1975
2009; 232
2021; 122
2020; 246
2021; 242
2017; 112
2017; 313
2006; 67
2002; 141
2015; 133
2018; 211
2012; 217
2021; 7
2021; 44
2019; 31
2019; 78
2021; 142
2021; 384
2011; 78
2010; 162
2020; 422
2021; 386
2018; 61
2005; 83
2022; 115
2020; 108
2010; 44
2015; 196
2010; 49
2021; 99
2021; 256
2021
2017; 17
2021; 257
1997; 37
2020; 590
2002; 128
2016
2020; 233
2000; 186
2016; 60
2020; 235
2014
2019; 216
2020; 65
2021; 253
2021; 374
2007; 88
1994; 4
2022; 389
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
Strang G (e_1_2_10_39_1) 2016
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
Ivakhnenko AG (e_1_2_10_21_1) 1997; 37
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
Holland JH (e_1_2_10_40_1) 1975
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 78
  start-page: 3799
  issue: 5
  year: 2019
  end-page: 3813
  article-title: Predicting tunnel boring machine performance through a new model based on the group method of data handling
  publication-title: Bull Eng Geol Environ
– volume: 115
  year: 2022
  article-title: Optimization of flight test tasks allocation and sequencing using genetic algorithm
  publication-title: Appl Soft Comput
– volume: 142
  year: 2021
  article-title: Curved fatigue crack growth prediction under variable amplitude loading by artificial neural network
  publication-title: Int J Fatigue
– volume: 83
  start-page: 1526
  issue: 17–18
  year: 2005
  end-page: 1535
  article-title: A meshfree method based on the peridynamic model of solid mechanics
  publication-title: Comput Struct
– volume: 7
  start-page: 238
  issue: 2
  year: 2021
  end-page: 251
  article-title: Prediction of disc cutter life during shield tunnelling with AI via incorporation of genetic algorithm into GMDH‐type neural network
  publication-title: Engineering
– volume: 253
  year: 2021
  article-title: Machine learning approaches to rock fracture mechanics problems: mode‐I fracture toughness determination
  publication-title: Eng Fract Mech
– year: 1975
– volume: 44
  start-page: 73
  year: 2010
  end-page: 168
  article-title: Peridynamic theory of solid mechanics
  publication-title: Adv Appl Mech
– volume: 78
  start-page: 1156
  issue: 6
  year: 2011
  end-page: 1168
  article-title: Characteristics of dynamic brittle fracture captured with peridynamics
  publication-title: Eng Fract Mech
– volume: 386
  year: 2021
  article-title: Parametric deep energy approach for elasticity accounting for strain gradient effects
  publication-title: Comput Methods Appl Mech Eng
– volume: 37
  start-page: 1053
  year: 1997
  end-page: 1072
  article-title: Recent developments of self‐organising modeling in prediction and analysis of stock market
  publication-title: Microelectron Reliab
– volume: 49
  start-page: 556
  issue: 3
  year: 2010
  end-page: 567
  article-title: Evolutionary design of generalized GMDH‐type neural network for prediction of concrete compressive strength using UPV
  publication-title: Comput Mater Sci
– volume: 67
  start-page: 868
  issue: 6
  year: 2006
  end-page: 893
  article-title: A method for dynamic crack and shear band propagation with phantom nodes
  publication-title: Int J Numer Methods Eng
– year: 2014
– volume: 44
  start-page: 2444
  issue: 9
  year: 2021
  end-page: 2461
  article-title: Smoothed peridynamics for the extremely large deformation and cracking problems: unification of peridynamics and smoothed particle hydrodynamics
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 162
  start-page: 229
  issue: 1–2
  year: 2010
  end-page: 244
  article-title: Studies of dynamic crack propagation and crack branching with peridynamics
  publication-title: Int J Fract
– volume: 246
  year: 2020
  article-title: Detection and classification of matrix cracking in laminated composites using guided wave propagation and artificial neural networks
  publication-title: Compos Struct
– volume: 374
  year: 2021
  article-title: Data‐driven learning of nonlocal physics from high‐fidelity synthetic data
  publication-title: Comput Methods Appl Mech Eng
– volume: 61
  start-page: 499
  issue: 4
  year: 2018
  end-page: 518
  article-title: Surface corrections for peridynamic models in elasticity and fracture
  publication-title: Comput Mech
– volume: 108
  start-page: 1451
  issue: 12
  year: 2016
  end-page: 1476
  article-title: Dual‐horizon peridynamics
  publication-title: Int J Numer Methods Eng
– volume: 256
  year: 2021
  article-title: A vector form conjugated‐shear bond‐based peridynamic model for crack initiation and propagation in linear elastic solids
  publication-title: Eng Fract Mech
– volume: 17
  start-page: 609
  issue: 3
  year: 2017
  end-page: 622
  article-title: Detection of fatigue cracking in steel bridge girders: a support vector machine approach
  publication-title: Arch Civ Mech Eng
– volume: 590
  year: 2020
  article-title: Novel hybrid intelligence models for flood‐susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search
  publication-title: J Hydrol
– volume: 313
  start-page: 271
  year: 2017
  end-page: 286
  article-title: Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design
  publication-title: Appl Math Comput
– volume: 128
  start-page: 80
  issue: 1–3
  year: 2002
  end-page: 87
  article-title: Modelling of explosive cutting process of plates using GMDH‐type neural network and singular value decomposition
  publication-title: J Mater Process Technol
– volume: 48
  start-page: 175
  issue: 1
  year: 2000
  end-page: 209
  article-title: Reformulation of elasticity theory for discontinuities and long‐range forces
  publication-title: J Mech Phys Solids
– volume: 196
  start-page: 59
  issue: 1–2
  year: 2015
  end-page: 98
  article-title: Why do cracks branch? A peridynamic investigation of dynamic brittle fracture
  publication-title: Int J Fract
– volume: 211
  start-page: 13
  issue: 1–2
  year: 2018
  end-page: 42
  article-title: A coupled thermo‐mechanical bond‐based peridynamics for simulating thermal cracking in rocks
  publication-title: Int J Fract
– start-page: 350
  year: 2016
  end-page: 355
– volume: 30
  start-page: 514
  year: 2015
  end-page: 528
  article-title: Application of artificial neural network for predicting crack growth direction in multiple cracks geometry
  publication-title: Appl Soft Comput
– volume: 233
  year: 2020
  article-title: A comparative review between genetic algorithm use in composite optimisation and the state‐of‐the‐art in evolutionary computation
  publication-title: Composite Structures
– volume: 232
  start-page: 275
  issue: 2
  year: 2009
  end-page: 284
  article-title: A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components
  publication-title: J Comput Appl Math
– volume: 257
  year: 2021
  article-title: A state‐of‐the‐art review of crack branching
  publication-title: Eng Fract Mech
– volume: 217
  start-page: 247
  year: 2012
  end-page: 261
  article-title: Peridynamic model for dynamic fracture in unidirectional fiber‐reinforced composites
  publication-title: Comput Methods Appl Mech Eng
– volume: 216
  year: 2019
  article-title: Influence of micro‐modulus functions on peridynamics simulation of crack propagation and branching in brittle materials
  publication-title: Eng Fract Mech
– volume: 242
  year: 2021
  article-title: A refined thermo‐mechanical fully coupled peridynamics with application to concrete cracking
  publication-title: Eng Fract Mech
– volume: 384
  year: 2021
  article-title: Learning nonlocal constitutive models with neural networks
  publication-title: Comput Methods Appl Mech Eng
– volume: 88
  start-page: 151
  issue: 2
  year: 2007
  end-page: 184
  article-title: Peridynamic states and constitutive modeling
  publication-title: J Elast
– volume: 112
  start-page: 2087
  issue: 13
  year: 2017
  end-page: 2109
  article-title: Voronoi‐based peridynamics and cracking analysis with adaptive refinement
  publication-title: Int J Numer Methods Eng
– volume: 422
  year: 2020
  article-title: nPINNs: nonlocal physics‐informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications
  publication-title: J Comput Phys
– volume: 31
  start-page: 777
  issue: 3
  year: 2019
  end-page: 791
  article-title: New neural network‐based response surface method for reliability analysis of structures
  publication-title: Neural Comput Appl
– volume: 26
  start-page: 65
  issue: 1
  year: 1984
  end-page: 80
  article-title: An experimental investigation into dynamic fracture: II. microstructural aspects
  publication-title: Int J Fract
– year: 2021
  article-title: Drucker‐Prager plasticity model in the framework of OSB‐PD theory with shear deformation
  publication-title: Eng Comput
– year: 2016
– volume: 108
  year: 2020
  article-title: A coupling model of XFEM/peridynamics for 2D dynamic crack propagation and branching problems
  publication-title: Theor Appl Fract Mech
– volume: 386
  year: 2021
  article-title: Data‐driven nonlocal mechanics: discovering the internal length scales of materials
  publication-title: Comput Methods Appl Mech Eng
– volume: 122
  start-page: 5558
  issue: 20
  year: 2021
  end-page: 5593
  article-title: The boundary element method of peridynamics
  publication-title: Int J Numer Methods Eng
– volume: 186
  start-page: 311
  issue: 2–4
  year: 2000
  end-page: 338
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput Methods Appl Mech Eng
– volume: 60
  start-page: 277
  year: 2016
  end-page: 299
  article-title: Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non‐ordinary state‐based peridynamics
  publication-title: Eur J Mech A Solids
– volume: 141
  start-page: 237
  issue: 3–4
  year: 2002
  end-page: 258
  article-title: The design of self‐organizing polynomial neural networks
  publication-title: Inf Sci
– volume: 386
  year: 2021
  article-title: A machine‐learning framework for peridynamic material models with physical constraints
  publication-title: Comput Methods Appl Mech Eng
– volume: 99
  year: 2021
  article-title: Prediction of air‐overpressure induced by blasting using an ANFIS‐PNN model optimized by GA
  publication-title: Appl Soft Comput
– volume: 389
  year: 2022
  article-title: A data‐driven peridynamic continuum model for upscaling molecular dynamics
  publication-title: Comput Methods Appl Mech Eng
– volume: 26
  start-page: 141
  issue: 2
  year: 1984
  end-page: 154
  article-title: An experimental investigation into dynamic fracture: III. On steady‐state crack propagation and crack branching
  publication-title: Int J Fract
– volume: 4
  start-page: 65
  issue: 2
  year: 1994
  end-page: 85
  article-title: A genetic algorithm tutorial
  publication-title: Stat Comput
– volume: 133
  start-page: 529
  year: 2015
  end-page: 546
  article-title: A peridynamic model for dynamic fracture in functionally graded materials
  publication-title: Compos Struct
– volume: 65
  start-page: 1365
  issue: 5
  year: 2020
  end-page: 1376
  article-title: Mixed peridynamic formulations for compressible and incompressible finite deformations
  publication-title: Comput Mech
– volume: 235
  year: 2020
  article-title: Peridynamic micromechanical modeling of plastic deformation and progressive damage prediction in dual‐phase materials
  publication-title: Eng Fract Mech
– volume: 249
  year: 2021
  article-title: Crack initiation pressure prediction for SC‐CO2 fracturing by integrated meta‐heuristics and machine learning algorithms
  publication-title: Eng Fract Mech
– ident: e_1_2_10_15_1
  doi: 10.1016/j.ijfatigue.2020.105886
– ident: e_1_2_10_44_1
  doi: 10.1016/j.asoc.2021.108241
– ident: e_1_2_10_19_1
  doi: 10.1016/j.acme.2016.11.005
– ident: e_1_2_10_4_1
  doi: 10.1016/j.engfracmech.2021.107944
– ident: e_1_2_10_7_1
  doi: 10.1016/j.compstruct.2015.07.047
– ident: e_1_2_10_27_1
  doi: 10.1016/j.eng.2020.02.016
– ident: e_1_2_10_10_1
  doi: 10.1016/j.engfracmech.2020.107463
– ident: e_1_2_10_18_1
  doi: 10.1016/j.engfracmech.2021.107890
– ident: e_1_2_10_31_1
  doi: 10.1016/j.cma.2021.114039
– volume-title: Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
  year: 1975
  ident: e_1_2_10_40_1
– ident: e_1_2_10_6_1
  doi: 10.1016/j.cma.2012.01.016
– ident: e_1_2_10_36_1
  doi: 10.1016/S0065‐2156(10)44002‐8
– ident: e_1_2_10_51_1
  doi: 10.1016/j.engfracmech.2010.11.020
– ident: e_1_2_10_20_1
  doi: 10.1016/j.engfracmech.2021.107750
– ident: e_1_2_10_47_1
  doi: 10.1016/j.cam.2009.06.008
– ident: e_1_2_10_24_1
  doi: 10.1016/S0924‐0136(02)00264‐9
– ident: e_1_2_10_55_1
  doi: 10.1016/j.tafmec.2020.102573
– ident: e_1_2_10_25_1
  doi: 10.1016/S0020‐0255(02)00175‐5
– ident: e_1_2_10_5_1
  doi: 10.1002/nme.6764
– ident: e_1_2_10_17_1
  doi: 10.1016/j.asoc.2015.02.003
– volume-title: Introduction to Linear Algebra
  year: 2016
  ident: e_1_2_10_39_1
– ident: e_1_2_10_35_1
  doi: 10.1007/978-1-4614-8465-3
– ident: e_1_2_10_8_1
  doi: 10.1016/j.engfracmech.2020.107179
– ident: e_1_2_10_16_1
  doi: 10.1016/j.compstruct.2020.112403
– ident: e_1_2_10_26_1
  doi: 10.1109/DSMP.2016.7583574
– ident: e_1_2_10_48_1
  doi: 10.1007/s00466‐017‐1469‐1
– ident: e_1_2_10_13_1
  doi: 10.1007/s00466‐020‐01824‐2
– ident: e_1_2_10_14_1
  doi: 10.1007/s10659‐007‐9125‐1
– ident: e_1_2_10_37_1
  doi: 10.1007/s10064‐018‐1349‐8
– ident: e_1_2_10_34_1
  doi: 10.1016/j.cma.2021.114062
– ident: e_1_2_10_22_1
  doi: 10.1016/j.amc.2017.06.012
– ident: e_1_2_10_2_1
  doi: 10.1016/S0022‐5096(99)00029‐0
– ident: e_1_2_10_57_1
  doi: 10.1002/nme.5257
– volume: 37
  start-page: 1053
  year: 1997
  ident: e_1_2_10_21_1
  article-title: Recent developments of self‐organising modeling in prediction and analysis of stock market
  publication-title: Microelectron Reliab
– ident: e_1_2_10_30_1
  doi: 10.1016/j.cma.2021.113927
– ident: e_1_2_10_38_1
  doi: 10.1007/s00521‐017‐3109‐2
– ident: e_1_2_10_12_1
  doi: 10.1111/ffe.13523
– ident: e_1_2_10_45_1
  doi: 10.1016/j.compstruct.2019.111739
– ident: e_1_2_10_59_1
  doi: 10.1007/s10704‐015‐0056‐8
– ident: e_1_2_10_32_1
  doi: 10.1016/j.cma.2021.114400
– ident: e_1_2_10_11_1
  doi: 10.1007/s10704‐018‐0273‐z
– ident: e_1_2_10_50_1
  doi: 10.1002/nme.1652
– ident: e_1_2_10_46_1
  doi: 10.1016/S0045‐7825(99)00389‐8
– ident: e_1_2_10_9_1
  doi: 10.1007/s00366‐021‐01527‐z
– ident: e_1_2_10_3_1
  doi: 10.1016/j.compstruc.2004.11.026
– ident: e_1_2_10_29_1
  doi: 10.1016/j.cma.2021.114096
– ident: e_1_2_10_56_1
  doi: 10.1016/j.euromechsol.2016.08.009
– ident: e_1_2_10_54_1
  doi: 10.1007/BF01157550
– ident: e_1_2_10_60_1
  doi: 10.1016/j.engfracmech.2019.106498
– ident: e_1_2_10_49_1
  doi: 10.1016/j.engfracmech.2021.108036
– ident: e_1_2_10_43_1
  doi: 10.1016/j.jhydrol.2020.125423
– ident: e_1_2_10_58_1
  doi: 10.1002/nme.5596
– ident: e_1_2_10_52_1
  doi: 10.1007/BF01152313
– ident: e_1_2_10_53_1
  doi: 10.1007/s10704‐010‐9442‐4
– ident: e_1_2_10_33_1
  doi: 10.1016/j.cma.2020.113553
– ident: e_1_2_10_41_1
  doi: 10.1007/BF00175354
– ident: e_1_2_10_28_1
  doi: 10.1016/j.jcp.2020.109760
– ident: e_1_2_10_23_1
  doi: 10.1016/j.commatsci.2010.05.050
– ident: e_1_2_10_42_1
  doi: 10.1016/j.asoc.2020.106904
SSID ssj0011503
Score 2.4497056
Snippet In the governing equation of motion of bond‐based peridynamics, the acceleration of a material point can be considered as the response function of all the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5618
SubjectTerms data‐driven model
Elastic deformation
equation of motion
Equations of motion
Exact solutions
Finite element method
Genetic algorithms
GMDH neural network
Group method of data handling
Horizon
Modulus of elasticity
Neural networks
peridynamics
Response functions
Stiffness
Title A data‐driven bond‐based peridynamic model derived from group method of data handling neural network with genetic algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.7081
https://www.proquest.com/docview/2725375159
Volume 123
WOSCitedRecordID wos000868829300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEA6iHvTgv7i6ygiip2o3m27S46IuHnQRUfBW0k4iwtqVrXrVR_AZfRIzabuuoCB4KimTNiQzmY9k5hvG9pyXMVZnPLBSdQKhlQ50JkSghBYWpY0EWl9sQvb76vY2vqyiKikXpuSHGB-4kWX4_ZoMXKfF0QRp6IM5lCFlXc9wp7ZOx2dOrno35-M7BAd12nWARxSrVk09G_Kjuu93Z_SFMCdxqnc0vcX_DHGJLVTwErqlPiyzKZOvsMUKakJlyMUKm5_gIXStizF5a7HKXrtAcaMfb-84or0Q0mGOrkUOD4GYkbEsYw--jA6gITEEylQBnyUCZV1qGFr_JfBUDu5PQOyZbnh5GXsOdAgMToMpkRL04G44ci8e1thN7_T6-Cyo6jQEmQMXrcCBGsERpULUobQdnkaYKpXFRkUhTzV3EAGJR07rWNgIQ8OFjCyPOxjqTGF7nU3nw9xsMDCGblItpg55irjVTg0iFw7EhNxEWokGO6gXLMkqEnOqpTFISvplnrg5T2jOG2x3LPlYEnf8INOs1zypTLdIuORRWxLMa7B9v7q_9k_6F6f03Pyr4Bab45Q-4akjm2z6afRsttls9vJ0X4x2KgX-BBrF-DQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RSxwxEB7kLLQ-aNWKZ207BalPW_dy2UsWn8R6WLw7pCj4tmR3EhF0T-7UV_0J_kZ_STPZ3esVWij0acky2Q3JTOZjkvkGYMd7GetMISKndC-SRpvIFFJGWhrpSLlEkgvFJtRopC8u0tMF2G9yYSp-iFnAjS0j7Nds4ByQ3ptjDb2xX1XMadeL0muRbMHitx_988HsEMFjnW5zwyNJdafhno3FXtP3d2_0C2LOA9Xgafor_zXGt7BcA0w8qDRiFRZsuQYrNdjE2pSna7A0x0ToW8MZfet0HR4PkG-Ovjw904R3Q8zHJfkWuzxC5kamqpA9hkI6SJbFCDlXBUOeCFaVqXHswpcwkDn4PyHzZ_rhldXtc-QwMHod5lRKNNeX44l_cfMOzvtHZ4fHUV2pISo8vOhEHtZIQaQ0kYmV64k8oVzrIrU6iUVuhAcJxExyxqTSJRRbIVXiRNqj2BSauhvQKsel3QS0ls9SHeUee8q0080tkZAexsTCJkbLNuw2K5YVNY05V9O4zioCZpH5Oc94ztvweSZ5W1F3_EFmu1n0rDbeaSaUSLqKgV4bvoTl_Wv_bDQ84ufWvwp-gtfHZ8NBNvg-OnkPbwQnUwQiyW1o3U3u7Qd4VTzcXU0nH2tt_gnpzfwk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RaxQxEB7KnYg-WK2Kp6cdQerT9vZyySWLT8X2qNgeRVro25LdSYrQ7pW7tq_6E_ob-0vMZHfPExQKPi1ZJrshk8l8JDPfAHwIXsZ5W4rEazNOpDU2saWUiZFWetJeSfKx2ISeTs3paXa0Bp_aXJiaH2J54MaWEfdrNnB3SX6wwhp64bZ1ymnXXakCEO9Ad_fb5ORgeYkQsM6ojfBQmRm23LOpGLR9__RGvyHmKlCNnmay_l9jfApPGoCJO_WKeAZrrtqA9QZsYmPKiw14vMJEGFqHS_rWxXP4sYMcOXr385bmvBtiMasotNjlETI3MtWF7DEW0kFyLEbIuSoY80SwrkyNMx-_hJHMIfwJmT8zDK-qo8-Rj4ExrGFOpUR7fjabhxcXL-Bksnf8eT9pKjUkZYAXwyTAGimItCGyqfZjUSgqjCkzZ1QqCisCSCBmkrM2k15R6oTUyotsTKktDY1eQqeaVe4VoHN8l-qpCNhTZsNR4YiEDDAmFU5ZI3vwsdVYXjY05lxN4zyvCZhFHuY85znvwful5GVN3fEXmX6r9Lwx3kUutFAjzUCvB1tRvf_sn08P9_j5-r6Cm_DwaHeSH3yZfn0DjwTnUkQeyT50rubX7i08KG-uvi_m75rF_At8c_uf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data%E2%80%90driven+bond%E2%80%90based+peridynamic+model+derived+from+group+method+of+data+handling+neural+network+with+genetic+algorithm&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Xiang%E2%80%90Long+Yu&rft.au=Xiao%E2%80%90Ping+Zhou&rft.date=2022-11-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=123&rft.issue=22&rft.spage=5618&rft.epage=5651&rft_id=info:doi/10.1002%2Fnme.7081&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon