SnS₂/WSe₂ van der Waals Single-Detector Spectrometer With a Dynamically Selecting Spectral Reconstruction Strategy

The single-detector spectrometers based on 2D layer van der Waals (vdW) heterojunctions offer advantages in spectral reconstruction due to their high sensitivity, tunable optical properties, and the ability to cover a broad spectral range. There exist two principal algorithms dominating spectrum rec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE electron device letters Ročník 46; číslo 5; s. 801 - 804
Hlavní autori: Zhou, Yang, Mu, Haoran, Zhang, Congwen, Xu, Renjing, Zhang, Guangyu, Lin, Shenghuang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0741-3106, 1558-0563
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The single-detector spectrometers based on 2D layer van der Waals (vdW) heterojunctions offer advantages in spectral reconstruction due to their high sensitivity, tunable optical properties, and the ability to cover a broad spectral range. There exist two principal algorithms dominating spectrum reconstruction for this kind spectrometer: the Tikhonov regularization method combined with the Least Squares Method (LSM) and neural network-based approaches, particularly Deep Learning (DL). However, both of the algorithms exhibit inherent limitations in spectral reconstruction, which constrain the versatility of computational spectrometers that rely solely on a single algorithm for reconstructing diverse spectral profiles. To overcome this limitation, we introduce an artificial neural network (ANN)-based classification model capable of dynamically selecting the optimal algorithm throughout the reconstruction process. This enables highly accurate spectral reconstruction within the 440-700 nm wavelength range, achieving a spectral resolution of 6 nm. By harnessing the complementary strengths of multiple algorithms, our approach proposes a novel strategy for combining techniques to enhance the precision of spectral reconstructions, laying the groundwork for more sophisticated methods in the future.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2025.3545960