Lorentzian fermionic action by twisting Euclidean spectral triples

We show how the twisting of spectral triples induces a transition from a Euclidean to a Lorentzian noncommutative geometry at the level of the fermionic action. More specifically, we compute the fermionic action for the twisting of a closed Euclidean manifold, then that of a two-sheet Euclidean mani...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of noncommutative geometry Ročník 16; číslo 2; s. 513 - 559
Hlavní autoři: Martinetti, Pierre, Singh, Devashish
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.01.2022
ISSN:1661-6952, 1661-6960
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We show how the twisting of spectral triples induces a transition from a Euclidean to a Lorentzian noncommutative geometry at the level of the fermionic action. More specifically, we compute the fermionic action for the twisting of a closed Euclidean manifold, then that of a two-sheet Euclidean manifold, and finally the twisting of the spectral triple of electrodynamics in Euclidean signature. We obtain the Weyl and the Dirac equations in Lorentzian signature (and in the temporal gauge). The twisted fermionic action is then shown to be invariant under an action of the Lorentz group. This permits us to interpret the field of 1-form that parametrises the twisted fluctuation of a manifold as the (dual) of the energy-momentum 4-vector.
ISSN:1661-6952
1661-6960
DOI:10.4171/jncg/476