Distributed Decision-Tree Induction in Peer-to-Peer Systems

This paper offers a scalable and robust distributed algorithm for decision‐tree induction in large peer‐to‐peer (P2P) environments. Computing a decision tree in such large distributed systems using standard centralized algorithms can be very communication‐expensive and impractical because of the syn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical analysis and data mining Jg. 1; H. 2; S. 85 - 103
Hauptverfasser: Bhaduri, Kanishka, Wolff, Ran, Giannella, Chris, Kargupta, Hillol
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2008
Schlagworte:
ISSN:1932-1864, 1932-1872
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper offers a scalable and robust distributed algorithm for decision‐tree induction in large peer‐to‐peer (P2P) environments. Computing a decision tree in such large distributed systems using standard centralized algorithms can be very communication‐expensive and impractical because of the synchronization requirements. The problem becomes even more challenging in the distributed stream monitoring scenario where the decision tree needs to be updated in response to changes in the data distribution. This paper presents an alternate solution that works in a completely asynchronous manner in distributed environments and offers low communication overhead, a necessity for scalability. It also seamlessly handles changes in data and peer failures. The paper presents extensive experimental results to corroborate the theoretical claims. Copyright © 2008 Wiley Periodicals, Inc., A Wiley Company Statistical Analy Data Mining 1: 000‐000, 2008
AbstractList This paper offers a scalable and robust distributed algorithm for decision‐tree induction in large peer‐to‐peer (P2P) environments. Computing a decision tree in such large distributed systems using standard centralized algorithms can be very communication‐expensive and impractical because of the synchronization requirements. The problem becomes even more challenging in the distributed stream monitoring scenario where the decision tree needs to be updated in response to changes in the data distribution. This paper presents an alternate solution that works in a completely asynchronous manner in distributed environments and offers low communication overhead, a necessity for scalability. It also seamlessly handles changes in data and peer failures. The paper presents extensive experimental results to corroborate the theoretical claims. Copyright © 2008 Wiley Periodicals, Inc., A Wiley Company Statistical Analy Data Mining 1: 000‐000, 2008
Author Bhaduri, Kanishka
Wolff, Ran
Giannella, Chris
Kargupta, Hillol
Author_xml – sequence: 1
  givenname: Kanishka
  surname: Bhaduri
  fullname: Bhaduri, Kanishka
  email: kanishk1@cs.umbc.edu
  organization: Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA
– sequence: 2
  givenname: Ran
  surname: Wolff
  fullname: Wolff, Ran
  organization: Department of Management Information Systems, Haifa University, Haifa, 31905, Israel
– sequence: 3
  givenname: Chris
  surname: Giannella
  fullname: Giannella, Chris
  organization: Department of Computer Science, New Mexico State University, Las Cruces NM, 88003, USA
– sequence: 4
  givenname: Hillol
  surname: Kargupta
  fullname: Kargupta, Hillol
  organization: Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA
BookMark eNp1kEtPAjEUhRuDiYAu_AezdVHpYzotccVDkIhKAsqyuXQ6SRVmTDtE-ffOCLIwurrnJuc7uee2UCMvcovQJSXXlBDWCbCpBUlOUJN2OcNUSdY46iQ-Q60QXgkRCaFxE90MXSi9W21Lm0ZDa1xwRY4X3tpokqdbU1Zr5PJoZq3HZYHrGc13obSbcI5OM1gHe3GYbfQ8ul0M7vD0aTwZ9KbYMMYS3E2FijMVx8LImEtQJskUGFDMShBxmgEHwUUKJONECJlKQ1aq8giqwFLgbdTZ5xpfhOBtpo0rob6s9ODWmhJdd9dVd_3dvSKufhHv3m3A7_70HtI_3Nru_jfqee_hh8B7onqd_TwS4N90IrkUevk41i_9ezJbyr4e8S_FIXlw
CitedBy_id crossref_primary_10_1016_j_eswa_2016_10_008
crossref_primary_10_1007_s10115_011_0474_5
crossref_primary_10_1109_TKDE_2008_222
crossref_primary_10_1007_s00477_015_1021_9
crossref_primary_10_1109_TKDE_2008_169
crossref_primary_10_1016_j_procs_2019_04_180
crossref_primary_10_1016_j_future_2015_07_010
crossref_primary_10_1002_sam_10009
crossref_primary_10_1007_s10586_014_0393_9
crossref_primary_10_1109_TIFS_2021_3097822
crossref_primary_10_1016_j_neucom_2013_08_011
crossref_primary_10_1016_j_jhydrol_2013_09_034
crossref_primary_10_1002_sam_11155
crossref_primary_10_1002_sam_10120
crossref_primary_10_1016_j_eti_2023_103331
crossref_primary_10_1109_TKDE_2012_172
crossref_primary_10_1007_s12083_010_0075_1
crossref_primary_10_2166_wpt_2024_242
crossref_primary_10_1007_s10115_009_0274_3
crossref_primary_10_1007_s10796_021_10190_0
crossref_primary_10_1016_j_asoc_2015_06_060
crossref_primary_10_1109_TKDE_2013_59
crossref_primary_10_3390_s21082786
crossref_primary_10_1016_j_catena_2018_12_011
Cites_doi 10.1109/ICDCS.2007.6238553
10.1109/ICDM.2004.10114
10.1137/1.9781611972719.19
10.1007/BF00116251
10.1016/j.jpdc.2007.07.011
10.1145/1082469.1082470
10.1007/s10723-007-9069-5
10.3233/HIS-2004-11-210
10.1109/TWC.2005.846971
10.1145/1233321.1233323
10.1145/1014052.1014120
10.1007/BF00058655
10.1109/90.554729
10.1145/1165555.1165569
10.1145/347090.347107
10.1016/j.ins.2005.11.007
10.1109/ICAC.2004.1301345
10.1109/TSMCB.2004.836888
10.1109/MIC.2006.74
10.4018/978-1-59904-663-1.ch007
10.1137/1.9781611972764.38
10.1023/A:1007665907178
10.1145/1081870.1081896
10.1137/1.9781611972764.14
10.1007/978-3-540-30186-8_20
10.1109/TKDE.2005.129
10.7551/mitpress/1100.003.0014
10.1145/1146381.1146399
10.1006/jpdc.2000.1694
10.1109/TKDE.2007.190714
10.1145/984622.984624
10.1145/1281192.1281296
10.1145/1150402.1150488
ContentType Journal Article
Copyright Copyright © 2008 Wiley Periodicals, Inc., A Wiley Company
Copyright_xml – notice: Copyright © 2008 Wiley Periodicals, Inc., A Wiley Company
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/sam.10006
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1932-1872
EndPage 103
ExternalDocumentID 10_1002_sam_10006
SAM10006
ark_67375_WNG_VBK0PW7B_F
Genre article
GroupedDBID 05W
0R~
123
1L6
1OC
31~
33P
3SF
4.4
52U
5DZ
66C
8-1
8UM
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ACAHQ
ACBWZ
ACCZN
ACIWK
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
ESX
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
I-F
IX1
J9A
JPC
L8X
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
NNB
O66
O9-
OIG
P2P
P2W
Q.N
QB0
ROL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
XBAML
XV2
ZZTAW
A00
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
P4E
RWI
AAYXX
CITATION
ID FETCH-LOGICAL-c2226-9d584f8445c7437a8c6f8aca82e7a54dfa3a535da0f30557d7c0b86f8518ae1a3
IEDL.DBID DRFUL
ISSN 1932-1864
IngestDate Sat Nov 29 04:26:10 EST 2025
Tue Nov 18 22:27:00 EST 2025
Wed Jan 22 16:48:49 EST 2025
Sun Sep 21 06:18:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2226-9d584f8445c7437a8c6f8aca82e7a54dfa3a535da0f30557d7c0b86f8518ae1a3
Notes ark:/67375/WNG-VBK0PW7B-F
ArticleID:SAM10006
istex:143C4C0F12AE36BA0CE40FC688AD5F322AC16EBF
PageCount 19
ParticipantIDs crossref_citationtrail_10_1002_sam_10006
crossref_primary_10_1002_sam_10006
wiley_primary_10_1002_sam_10006_SAM10006
istex_primary_ark_67375_WNG_VBK0PW7B_F
PublicationCentury 2000
PublicationDate June 2008
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: June 2008
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Statistical analysis and data mining
PublicationTitleAlternate Statistical Analy Data Mining
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, New Jersey, Addison-Wesley, 2006.
S. Mukherjee and H. Kargupta, Distributed probabilistic inferencing in sensor networks using variational approximation, JPDC 68(1):2008; 78-92.
I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, San Francisco, CA, Morgan Kaufmann, 2005.
I. Keidar and A. Schuster, Want scalable computing?: speculate!' SIGACT News 37(3):2006; 59-66.
K. Das, K. Bhaduri, K. Liu, and H. Kargupta, Distributed identification of top-$ l$ inner product elements and its application in a peer-to-peer network, IEEE Trans Knowl Data Eng (TKDE) 20(4):2008; 475-488.
M. Jelasity, A. Montresor, and O. Babaoglu, Gossip-based aggregation in large dynamic networks, ACM Trans Comput Syst (TOCS) 23(3):2005; 219-252.
S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta, Distributed data mining in peer-to-peer networks, IEEE Internet Comput Spec Issu Distributed Data Mining 10(4):2006; 18-26.
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, An introduction to variational methods for graphical models, Mach Learn 37(2):1999; 183-233.
D. Krivitski, A. Schuster, and R. Wolff, A local facility location algorithm for large-scale distributed systems, J Grid Comput 5(4):2007; 361-378.
D. E. Hershberger and H. Kargupta, Distributed multivariate regression using wavelet-based collective data mining, JPDC, 61(3):2001; 372-400.
S. Banyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu, and S. Datta, Clustering distributed data streams in peer-to-peer environments, Inf Sci 176(14):2006; 1952-1985.
L. Breiman, Bagging predictors, Mach Learn 2:1996; 123-140.
H. Kargupta and K. Sivakumar, Existential Pleasures of Distributed Data Mining. Data Mining: Next Generation Challenges and Future Directions, Menlo Park, CA, AAAI/MIT press, 2004.
V. Vapnik, Statistical Learning Theory, New York, Wiley-Interscience, 1998.
D. Caragea, A. Silvescu and V. Honavar, A framework for learning from distributed data using sufficient statistics and its application to learning decision trees, Int J Hybrid Intell Syst 1(1-2):2004; 80-89.
A. Bar-Or, D. Keren, A. Schuster, and R. Wolff, Hierarchical decision tree induction in distributed genomic databases, IEEE Trans Knowl Data Eng-Spec Issue Mining Biol Data 17(8):2005; 1138-1151.
N. Li, J. Hou, and L. Sha, Design and analysis of an MST-based topology control algorithm, IEEE Trans Wireless Commun 4(3):2005; 1195-1205.
R. Wolff and A. Schuster, Association rule mining in peer-to-peer systems, IEEE Trans Syst Man Cybern Part B 34(6):2004; 2426-2438.
H. Kargupta and P. Chan, eds., Advances in Distributed and Parallel Knowledge Discovery, Menlo Park, CA, MIT Press, 2000.
J. Garcia-Luna-Aceves and S. Murthy, A path-finding algorithm for loop-free routing, IEEE Trans Network 5(1):1997; 148-160.
K. Liu, K. Bhaduri, K. Das, P. Nguyen, and H. Kargupta, Client-side web mining for community formation in peer-to-peer environments, SIGKDD Explor 8(2):2006,; 11-20.
J. R. Quinlan, C4.5: Programs for Machine Learning, San Mateo, CA, Morgan Kauffman, 1993.
F. V. Jensen, An Introduction to Bayesian Networks, London, UCL Press 1996.
L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees. Belmont, Wadsworth, 1984.
J. R. Quinlan, Induction of Decision Trees, Mach Learn 1(1):1986; 81-106.
2006; 10
2006; 37
1998
1997
2007
1996
2006; 176
2006
2005
1993
2004
2003
2004; 1
1997; 5
2005; 23
1986; 1
2001; 61
2001
2000
2004; 34
1999; 37
2005; 4
1984
2008; 68
2007; 5
2006,; 8
2008; 20
1996; 2
2005; 17
e_1_2_10_23_2
e_1_2_10_44_2
e_1_2_10_21_2
e_1_2_10_42_2
e_1_2_10_40_2
Quinlan J. R. (e_1_2_10_4_2) 1993
Breiman L. (e_1_2_10_3_2) 1984
Kargupta H. (e_1_2_10_12_2) 2004
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_37_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_32_2
e_1_2_10_30_2
e_1_2_10_29_2
e_1_2_10_27_2
e_1_2_10_48_2
e_1_2_10_25_2
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_20_2
e_1_2_10_43_2
e_1_2_10_41_2
Kargupta H. (e_1_2_10_13_2) 2000
Breiman L. (e_1_2_10_17_2) 1996; 2
e_1_2_10_19_2
e_1_2_10_5_2
e_1_2_10_38_2
e_1_2_10_7_2
e_1_2_10_36_2
e_1_2_10_9_2
e_1_2_10_33_2
Vapnik V. (e_1_2_10_16_2) 1998
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_50_2
Witten I. H. (e_1_2_10_49_2) 2005
Jensen F. V. (e_1_2_10_15_2) 1996
Tan P.‐N. (e_1_2_10_46_2) 2006
e_1_2_10_28_2
e_1_2_10_26_2
e_1_2_10_24_2
e_1_2_10_47_2
References_xml – reference: F. V. Jensen, An Introduction to Bayesian Networks, London, UCL Press 1996.
– reference: J. R. Quinlan, Induction of Decision Trees, Mach Learn 1(1):1986; 81-106.
– reference: I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, San Francisco, CA, Morgan Kaufmann, 2005.
– reference: I. Keidar and A. Schuster, Want scalable computing?: speculate!' SIGACT News 37(3):2006; 59-66.
– reference: D. Caragea, A. Silvescu and V. Honavar, A framework for learning from distributed data using sufficient statistics and its application to learning decision trees, Int J Hybrid Intell Syst 1(1-2):2004; 80-89.
– reference: M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, An introduction to variational methods for graphical models, Mach Learn 37(2):1999; 183-233.
– reference: L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees. Belmont, Wadsworth, 1984.
– reference: H. Kargupta and P. Chan, eds., Advances in Distributed and Parallel Knowledge Discovery, Menlo Park, CA, MIT Press, 2000.
– reference: R. Wolff and A. Schuster, Association rule mining in peer-to-peer systems, IEEE Trans Syst Man Cybern Part B 34(6):2004; 2426-2438.
– reference: S. Mukherjee and H. Kargupta, Distributed probabilistic inferencing in sensor networks using variational approximation, JPDC 68(1):2008; 78-92.
– reference: P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, New Jersey, Addison-Wesley, 2006.
– reference: J. R. Quinlan, C4.5: Programs for Machine Learning, San Mateo, CA, Morgan Kauffman, 1993.
– reference: S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta, Distributed data mining in peer-to-peer networks, IEEE Internet Comput Spec Issu Distributed Data Mining 10(4):2006; 18-26.
– reference: S. Banyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu, and S. Datta, Clustering distributed data streams in peer-to-peer environments, Inf Sci 176(14):2006; 1952-1985.
– reference: L. Breiman, Bagging predictors, Mach Learn 2:1996; 123-140.
– reference: A. Bar-Or, D. Keren, A. Schuster, and R. Wolff, Hierarchical decision tree induction in distributed genomic databases, IEEE Trans Knowl Data Eng-Spec Issue Mining Biol Data 17(8):2005; 1138-1151.
– reference: M. Jelasity, A. Montresor, and O. Babaoglu, Gossip-based aggregation in large dynamic networks, ACM Trans Comput Syst (TOCS) 23(3):2005; 219-252.
– reference: J. Garcia-Luna-Aceves and S. Murthy, A path-finding algorithm for loop-free routing, IEEE Trans Network 5(1):1997; 148-160.
– reference: V. Vapnik, Statistical Learning Theory, New York, Wiley-Interscience, 1998.
– reference: K. Liu, K. Bhaduri, K. Das, P. Nguyen, and H. Kargupta, Client-side web mining for community formation in peer-to-peer environments, SIGKDD Explor 8(2):2006,; 11-20.
– reference: K. Das, K. Bhaduri, K. Liu, and H. Kargupta, Distributed identification of top-$ l$ inner product elements and its application in a peer-to-peer network, IEEE Trans Knowl Data Eng (TKDE) 20(4):2008; 475-488.
– reference: N. Li, J. Hou, and L. Sha, Design and analysis of an MST-based topology control algorithm, IEEE Trans Wireless Commun 4(3):2005; 1195-1205.
– reference: D. Krivitski, A. Schuster, and R. Wolff, A local facility location algorithm for large-scale distributed systems, J Grid Comput 5(4):2007; 361-378.
– reference: D. E. Hershberger and H. Kargupta, Distributed multivariate regression using wavelet-based collective data mining, JPDC, 61(3):2001; 372-400.
– reference: H. Kargupta and K. Sivakumar, Existential Pleasures of Distributed Data Mining. Data Mining: Next Generation Challenges and Future Directions, Menlo Park, CA, AAAI/MIT press, 2004.
– volume: 20
  start-page: 475
  issue: 4
  year: 2008
  end-page: 488
  article-title: Distributed identification of top‐$ l$ inner product elements and its application in a peer‐to‐peer network
  publication-title: IEEE Trans Knowl Data Eng (TKDE)
– volume: 17
  start-page: 1138
  issue: 8
  year: 2005
  end-page: 1151
  article-title: Hierarchical decision tree induction in distributed genomic databases
  publication-title: IEEE Trans Knowl Data Eng—Spec Issue Mining Biol Data
– start-page: 102
  year: 2006
  end-page: 111
– year: 2005
– volume: 37
  start-page: 59
  issue: 3
  year: 2006
  end-page: 66
  article-title: Want scalable computing?: speculate!'
  publication-title: SIGACT News
– year: 2001
– year: 2003
– year: 2000
– year: 1996
– volume: 5
  start-page: 148
  issue: 1
  year: 1997
  end-page: 160
  article-title: A path‐finding algorithm for loop‐free routing
  publication-title: IEEE Trans Network
– volume: 23
  start-page: 219
  issue: 3
  year: 2005
  end-page: 252
  article-title: Gossip‐based aggregation in large dynamic networks
  publication-title: ACM Trans Comput Syst (TOCS)
– start-page: 74
  year: 1997
  end-page: 81
– volume: 10
  start-page: 18
  issue: 4
  year: 2006
  end-page: 26
  article-title: Distributed data mining in peer‐to‐peer networks
  publication-title: IEEE Internet Comput Spec Issu Distributed Data Mining
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  end-page: 106
  article-title: Induction of Decision Trees
  publication-title: Mach Learn
– start-page: 147
  year: 2007
  end-page: 175
– start-page: 968
  year: 2007
  end-page: 976
– volume: 34
  start-page: 2426
  issue: 6
  year: 2004
  end-page: 2438
  article-title: Association rule mining in peer‐to‐peer systems
  publication-title: IEEE Trans Syst Man Cybern Part B
– start-page: 563
  year: 2004
  end-page: 568
– start-page: 71
  year: 2000
  end-page: 80
– year: 1998
– volume: 2
  start-page: 123
  year: 1996
  end-page: 140
  article-title: Bagging predictors
  publication-title: Mach Learn
– start-page: 208
  year: 2005
  end-page: 217
– start-page: 50
  year: 2007
– volume: 176
  start-page: 1952
  issue: 14
  year: 2006
  end-page: 1985
  article-title: Clustering distributed data streams in peer‐to‐peer environments
  publication-title: Inf Sci
– volume: 4
  start-page: 1195
  issue: 3
  year: 2005
  end-page: 1205
  article-title: Design and analysis of an MST‐based topology control algorithm
  publication-title: IEEE Trans Wireless Commun
– year: 1984
– start-page: 687
  year: 2006
  end-page: 692
– volume: 5
  start-page: 361
  issue: 4
  year: 2007
  end-page: 378
  article-title: A local facility location algorithm for large‐scale distributed systems
  publication-title: J Grid Comput
– start-page: 153
  year: 2006
  end-page: 164
– volume: 1
  start-page: 80
  issue: 1–2
  year: 2004
  end-page: 89
  article-title: A framework for learning from distributed data using sufficient statistics and its application to learning decision trees
  publication-title: Int J Hybrid Intell Syst
– year: 2006
– year: 2004
– volume: 61
  start-page: 372
  issue: 3
  year: 2001
  end-page: 400
  article-title: Distributed multivariate regression using wavelet‐based collective data mining
  publication-title: JPDC
– start-page: 36
  year: 2004
  end-page: 43
– volume: 37
  start-page: 183
  issue: 2
  year: 1999
  end-page: 233
  article-title: An introduction to variational methods for graphical models
  publication-title: Mach Learn
– volume: 68
  start-page: 78
  issue: 1
  year: 2008
  end-page: 92
  article-title: Distributed probabilistic inferencing in sensor networks using variational approximation
  publication-title: JPDC
– start-page: 428
  year: 2006
  end-page: 439
– volume: 8
  start-page: 11
  issue: 2
  year: 2006,
  end-page: 20
  article-title: Client‐side web mining for community formation in peer‐to‐peer environments
  publication-title: SIGKDD Explor
– start-page: 1
  year: 2004
  end-page: 10
– year: 1993
– start-page: 67
  year: 2004
  end-page: 74
– start-page: 194
  year: 2007
  end-page: 199
– ident: e_1_2_10_30_2
  doi: 10.1109/ICDCS.2007.6238553
– ident: e_1_2_10_22_2
  doi: 10.1109/ICDM.2004.10114
– ident: e_1_2_10_25_2
  doi: 10.1137/1.9781611972719.19
– ident: e_1_2_10_2_2
  doi: 10.1007/BF00116251
– ident: e_1_2_10_18_2
– ident: e_1_2_10_31_2
  doi: 10.1016/j.jpdc.2007.07.011
– ident: e_1_2_10_36_2
  doi: 10.1145/1082469.1082470
– volume-title: Introduction to Data Mining
  year: 2006
  ident: e_1_2_10_46_2
– ident: e_1_2_10_37_2
  doi: 10.1007/s10723-007-9069-5
– ident: e_1_2_10_21_2
  doi: 10.3233/HIS-2004-11-210
– ident: e_1_2_10_45_2
  doi: 10.1109/TWC.2005.846971
– volume-title: Classification and Regression Trees
  year: 1984
  ident: e_1_2_10_3_2
– ident: e_1_2_10_5_2
  doi: 10.1145/1233321.1233323
– ident: e_1_2_10_8_2
  doi: 10.1145/1014052.1014120
– volume: 2
  start-page: 123
  year: 1996
  ident: e_1_2_10_17_2
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
– ident: e_1_2_10_42_2
  doi: 10.1109/90.554729
– ident: e_1_2_10_48_2
  doi: 10.1145/1165555.1165569
– ident: e_1_2_10_50_2
  doi: 10.1145/347090.347107
– ident: e_1_2_10_29_2
  doi: 10.1016/j.ins.2005.11.007
– ident: e_1_2_10_11_2
  doi: 10.1109/ICAC.2004.1301345
– ident: e_1_2_10_28_2
– volume-title: Advances in Distributed and Parallel Knowledge Discovery
  year: 2000
  ident: e_1_2_10_13_2
– ident: e_1_2_10_7_2
  doi: 10.1109/TSMCB.2004.836888
– ident: e_1_2_10_14_2
  doi: 10.1109/MIC.2006.74
– volume-title: Data Mining: Practical Machine Learning Tools and Techniques
  year: 2005
  ident: e_1_2_10_49_2
– ident: e_1_2_10_23_2
– ident: e_1_2_10_9_2
  doi: 10.4018/978-1-59904-663-1.ch007
– ident: e_1_2_10_47_2
  doi: 10.1007/s10723-007-9069-5
– ident: e_1_2_10_41_2
  doi: 10.1137/1.9781611972764.38
– ident: e_1_2_10_32_2
  doi: 10.1023/A:1007665907178
– volume-title: Statistical Learning Theory
  year: 1998
  ident: e_1_2_10_16_2
– ident: e_1_2_10_24_2
  doi: 10.1145/1081870.1081896
– ident: e_1_2_10_34_2
  doi: 10.1137/1.9781611972764.14
– ident: e_1_2_10_44_2
  doi: 10.1007/978-3-540-30186-8_20
– volume-title: An Introduction to Bayesian Networks
  year: 1996
  ident: e_1_2_10_15_2
– ident: e_1_2_10_19_2
– ident: e_1_2_10_20_2
  doi: 10.1109/TKDE.2005.129
– ident: e_1_2_10_33_2
  doi: 10.7551/mitpress/1100.003.0014
– ident: e_1_2_10_40_2
  doi: 10.1145/1146381.1146399
– ident: e_1_2_10_26_2
  doi: 10.1006/jpdc.2000.1694
– volume-title: C4.5: Programs for Machine Learning
  year: 1993
  ident: e_1_2_10_4_2
– ident: e_1_2_10_6_2
  doi: 10.1109/TKDE.2007.190714
– ident: e_1_2_10_27_2
  doi: 10.1145/984622.984624
– volume-title: Existential Pleasures of Distributed Data Mining. Data Mining: Next Generation Challenges and Future Directions
  year: 2004
  ident: e_1_2_10_12_2
– ident: e_1_2_10_35_2
– ident: e_1_2_10_38_2
– ident: e_1_2_10_43_2
– ident: e_1_2_10_39_2
  doi: 10.1145/1281192.1281296
– ident: e_1_2_10_10_2
  doi: 10.1145/1150402.1150488
SSID ssj0056014
Score 2.0181158
Snippet This paper offers a scalable and robust distributed algorithm for decision‐tree induction in large peer‐to‐peer (P2P) environments. Computing a decision tree...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms data mining
decision trees
peer-to-peer
Title Distributed Decision-Tree Induction in Peer-to-Peer Systems
URI https://api.istex.fr/ark:/67375/WNG-VBK0PW7B-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsam.10006
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1932-1872
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056014
  issn: 1932-1864
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFA5j88Ib5y_OP4qIeFOWNU2T4tXmrII6hm5udyVNExhqJ90UL30En9EnMWnTykBB8KYc6ElSTs5JTtLk-wA48hmiEFNhc4hc2-Uotn1PEjuiXMSyFUUwkhnZBOn16Hjs9yvgtLgLk-NDlBtuOjKy8VoHOItmzW_Q0Bl70qKG2645ym9xFdS6t8HwuhiI9VrD_FR27Bb13AJYCDrNsvDCdFTTln1bTFOzeSao_-sLV8GKSS-tdu4Pa6AiknVQL6gbLBPJG6Dd1YC5mutKxFbX8Ox8vn8MUiEsTeeRXXewJonVFyJVL-ZT9dCyZTDON8EwOB-cXdqGTcHmKgfwbD9WuYakrou5yhoIo9yTlHFGHUEYdmPJEMMIxwxKjQJGYsJhRJUOblEmWgxtgWoyTcQ2sARCTDAUu1A4LvEExcSXvh9J4qhSzGuAk8KoITdQ45rx4jHMQZKdUJkmzEzTAIel6nOOr_GT0nHWM6UGSx_0gTSCw1HvIrzvXMH-iHTCQDWcdcjvVYV37ZtM2Pm76i5Yzk-J6L2XPVCdpy9iHyzx1_lklh4Yr_sC8lTc_g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jE_TFecV5LSLiS1nbpE0KvmzOOdmFoZvzLaRpAkPdpJvioz_B3-gvMelNBgqCL-VAT9pyck5ycpp8HwAnPoPEcokwuQWRiTgMTd-T2AwIF6G0g8AKZEw2gXs9cn_v9wvgPDsLk-BD5AU3HRnxeK0DXBekq9-ooTP2pEWNt11Cyo2Uf5caN81hJxuJ9WIj_avsmDbxUIYsZDnVvPHCfFTSpn1bzFPjiaZZ_t8nroHVNME0aolHrIOCmGyAckbeYKSxvAlqDQ2Zq9muRGg0Uqadz_ePQSSEoQk94gMPxnhi9IWI1I35VF20bKQo51tg2LwcXLTMlE_B5CoL8Ew_VNmGJAi5XOUNmBHuScI4I47AzEWhZJC50A2ZJTUOGA4xtwKidFybMGEzuA2Kk-lE7ABDQMgEgyGyhIOwJ4iLfen7gcSOasW8CjjLrEp5CjauOS8eaQKT7FBlGhqbpgKOc9XnBGHjJ6XTuGtyDRY96C1p2KWj3hW9q7et_gjXaVO9OO6R3x9Fb2vdWNj9u-oRWG4Nuh3aue6198BKsmdEV2L2QXEevYgDsMRf5-NZdJi64BcuO-Du
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFL2UpIy9LGu3sXYfNaWUvZg4lmzJ0Jd0nruSNIQtWfImZOkKyta0ONnYY3_CfuN-ySR_jcAGg72YCz6yzZWudCVL5wCcJJLwIOLoq4BQnyqi_SQ2zM-5Qm0GeR7kphSbYJMJXy6T6Q6cNWdhKn6IdsHNRUbZX7sAxztt-r9ZQ9fyxpmOb7tLnYhMB7rph2w-bnpiN9mo_yqH_oDHtGEWCsJ-W3hrPOo6137fzlPLgSbr_d8nPoZHdYLpDasWsQc7uNqHXiPe4NWx_ASGqaPMdWpXqL20Vtr5ef9jViB6TtCjPPDgXa-8KWJhb2xu7cXZXs1y_hTm2bvZ2_d-rafgK5sFxH6ibbZhOKWRsnkDk1zFhksleYhMRlQbSWREIi0D43jAmGYqyLnFRAMucSDJM-isblf4HDwkRKIkmgYYUhYjj1hikiQ3LLSlZHwAbxqvClWTjTvNiy-iokkOhXWNKF1zAMct9K5i2PgT6LSsmhYhi89uSxqLxGJyIT6dj4Lpgp2LzL64rJG_P0p8HF6VxuG_Q4_gwTTNxPhyMnoBD6stI24h5iV0NsVXfAW76tvmel28rlvgL-fV4Gk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Decision%E2%80%90Tree+Induction+in+Peer%E2%80%90to%E2%80%90Peer+Systems&rft.jtitle=Statistical+analysis+and+data+mining&rft.au=Bhaduri%2C+Kanishka&rft.au=Wolff%2C+Ran&rft.au=Giannella%2C+Chris&rft.au=Kargupta%2C+Hillol&rft.date=2008-06-01&rft.issn=1932-1864&rft.eissn=1932-1872&rft.volume=1&rft.issue=2&rft.spage=85&rft.epage=103&rft_id=info:doi/10.1002%2Fsam.10006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sam_10006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1864&client=summon