pyMKM: An Open-Source Python Package for Microdosimetric Kinetic Model Calculation in Research and Clinical Applications
Among existing radiobiological models, the MKM and its extensions (SMK and OSMK) have demonstrated strong predictive capabilities but remain computationally demanding. To address this, we present pyMKM v0.1.0, an open-source Python package for the generation of microdosimetric tables and radiobiolog...
Uloženo v:
| Vydáno v: | Computation Ročník 13; číslo 11; s. 264 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.11.2025
|
| Témata: | |
| ISSN: | 2079-3197, 2079-3197 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Among existing radiobiological models, the MKM and its extensions (SMK and OSMK) have demonstrated strong predictive capabilities but remain computationally demanding. To address this, we present pyMKM v0.1.0, an open-source Python package for the generation of microdosimetric tables and radiobiological quantities based on these models. The package includes modules for track structure integration, saturation and stochastic corrections, oxygen modulation, and survival fraction computation. Validation was conducted against multiple published datasets across various ion species, LET values, and cell lines under both normoxic and hypoxic conditions. Quantitative comparisons showed high agreement with reference data, with average log errors typically below 0.06 and symmetric mean absolute percentage errors under 2%. The software achieved full unit test coverage and successful execution across multiple Python versions through continuous integration workflows. These results confirm the numerical accuracy, structural robustness, and reproducibility of pyMKM. The package provides a transparent, modular, and extensible tool for microdosimetric modeling in support of radiobiological studies, Monte Carlo-based dose calculation, and biologically guided treatment planning. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2079-3197 2079-3197 |
| DOI: | 10.3390/computation13110264 |