Cloud-VAE: Variational autoencoder with concepts embedded

•The initial concepts in latent space are described as prior distribution obtained by the proposed cloud model-based clustering algorithm.•Variational lower bound of Cloud-VAE is derived to guide training process and re-construct concepts of latent space, so that the mutual mapping between latent sp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pattern recognition Ročník 140; s. 109530
Hlavní autori: Liu, Yue, Liu, Zitu, Li, Shuang, Yu, Zhenyao, Guo, Yike, Liu, Qun, Wang, Guoyin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.08.2023
Predmet:
ISSN:0031-3203, 1873-5142
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The initial concepts in latent space are described as prior distribution obtained by the proposed cloud model-based clustering algorithm.•Variational lower bound of Cloud-VAE is derived to guide training process and re-construct concepts of latent space, so that the mutual mapping between latent space and concept space is established.•Reparameterization trick based forward cloud transformation algorithm is designed to constrain the representations range of latent space by increasing the randomness of latent variables.•The experimental results on six benchmark datasets show that Cloud-VAE has good clustering and reconstruction performance. Compared with the deep clustering methods VaDE and GMVAE, Cloud-VAE improved the NMI by 22.9% and 19.9% respectively.•Cloud-VAE can explicitly explain the aggregation process of the model, and other interpretable latent representations are found on top of the existed. Variational Autoencoder (VAE) has been widely and successfully used in learning coherent latent representation of data. However, the lack of interpretability in the latent space constructed by the VAE under the prior distribution is still an urgent problem. This paper proposes a VAE with understandable concept embedding named Cloud-VAE, which constructs interpretable latent space by disentangling the latent variables and considering their uncertainty based on cloud model. Firstly, cloud model-based clustering algorithm cast initial constraint of latent space into a prior distribution of concept which can be embedded into the latent space of the VAE to disentangle the latent variables. Secondly, reparameterization trick based on forward cloud transformation algorithm is designed to estimate the latent space concept by increasing the randomness of latent variables. Furthermore, variational lower bound of Cloud-VAE is derived to guide the training process to construct concepts of latent space, realizing the mutual mapping between latent space and concept space. Finally, experimental results on 6 benchmark datasets show that Cloud-VAE has good clustering and reconstruction performance, which can explicitly explain the aggregation process of the model and discover more interpretable disentangled representations.
AbstractList •The initial concepts in latent space are described as prior distribution obtained by the proposed cloud model-based clustering algorithm.•Variational lower bound of Cloud-VAE is derived to guide training process and re-construct concepts of latent space, so that the mutual mapping between latent space and concept space is established.•Reparameterization trick based forward cloud transformation algorithm is designed to constrain the representations range of latent space by increasing the randomness of latent variables.•The experimental results on six benchmark datasets show that Cloud-VAE has good clustering and reconstruction performance. Compared with the deep clustering methods VaDE and GMVAE, Cloud-VAE improved the NMI by 22.9% and 19.9% respectively.•Cloud-VAE can explicitly explain the aggregation process of the model, and other interpretable latent representations are found on top of the existed. Variational Autoencoder (VAE) has been widely and successfully used in learning coherent latent representation of data. However, the lack of interpretability in the latent space constructed by the VAE under the prior distribution is still an urgent problem. This paper proposes a VAE with understandable concept embedding named Cloud-VAE, which constructs interpretable latent space by disentangling the latent variables and considering their uncertainty based on cloud model. Firstly, cloud model-based clustering algorithm cast initial constraint of latent space into a prior distribution of concept which can be embedded into the latent space of the VAE to disentangle the latent variables. Secondly, reparameterization trick based on forward cloud transformation algorithm is designed to estimate the latent space concept by increasing the randomness of latent variables. Furthermore, variational lower bound of Cloud-VAE is derived to guide the training process to construct concepts of latent space, realizing the mutual mapping between latent space and concept space. Finally, experimental results on 6 benchmark datasets show that Cloud-VAE has good clustering and reconstruction performance, which can explicitly explain the aggregation process of the model and discover more interpretable disentangled representations.
ArticleNumber 109530
Author Wang, Guoyin
Liu, Zitu
Liu, Qun
Guo, Yike
Liu, Yue
Li, Shuang
Yu, Zhenyao
Author_xml – sequence: 1
  givenname: Yue
  surname: Liu
  fullname: Liu, Yue
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
– sequence: 2
  givenname: Zitu
  surname: Liu
  fullname: Liu, Zitu
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
– sequence: 3
  givenname: Shuang
  surname: Li
  fullname: Li, Shuang
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
– sequence: 4
  givenname: Zhenyao
  surname: Yu
  fullname: Yu, Zhenyao
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
– sequence: 5
  givenname: Yike
  surname: Guo
  fullname: Guo, Yike
  organization: The Department of Computing, Imperial College, London SW7 2AZ, U.K
– sequence: 6
  givenname: Qun
  surname: Liu
  fullname: Liu, Qun
  organization: The Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 7
  givenname: Guoyin
  surname: Wang
  fullname: Wang, Guoyin
  organization: The Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
BookMark eNqFkMtOwzAQRS1UJNrCH7DID6SMH62bLpCqqDykSmygW8uxJ-AojSvbBfH3pIQVC1iNdEfnauZMyKjzHRJyTWFGgS5umtlBJ-NfZwwY76NizuGMjOlS8nxOBRuRMQCnOWfAL8gkxgaAyn4xJkXZ-qPNd-vNKtvp4HRyvtNtpo_JY2e8xZB9uPSWGd8ZPKSY4b5Ca9FekvNatxGvfuaUvNxtnsuHfPt0_1iut7lhjKYckS7tghf1XCKvhBEgEDlHjYAM5KIqGDeWSoFSWltRUSCrZA0omBC1LPiUrIZeE3yMAWtlXPo-MwXtWkVBnSSoRg0S1EmCGiT0sPgFH4Lb6_D5H3Y7YNg_9u4wqGhcrwOtC2iSst79XfAFFjR6Lg
CitedBy_id crossref_primary_10_1049_gtd2_70068
crossref_primary_10_1007_s10489_024_05791_6
crossref_primary_10_1016_j_apenergy_2024_124385
crossref_primary_10_3390_e27030283
crossref_primary_10_3390_rs16111963
crossref_primary_10_1016_j_microc_2025_114814
crossref_primary_10_3390_jtaer20030220
crossref_primary_10_1016_j_ins_2024_120273
crossref_primary_10_1016_j_neucom_2024_127761
crossref_primary_10_1016_j_neucom_2025_130752
crossref_primary_10_1007_s11431_024_2732_9
crossref_primary_10_1016_j_eswa_2025_128578
crossref_primary_10_1016_j_neucom_2025_130129
Cites_doi 10.3390/land11010060
10.1007/s11004-021-09979-1
10.1016/j.patcog.2017.11.019
10.1109/TPAMI.2020.3026079
10.1016/j.ins.2018.05.053
10.1016/j.patcog.2020.107514
10.1016/j.patcog.2021.108191
10.1016/j.patcog.2018.04.007
10.1109/ACCESS.2020.2977671
10.1080/00207543.2019.1662133
10.1016/j.patcog.2021.108334
10.1016/j.patcog.2019.107166
10.1016/j.knosys.2023.110261
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2023.109530
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2023_109530
S0031320323002303
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c221t-ee18d639f57e3b4c404ee33eae0e2076b923cd174e77ddb149e2b7f0e4244f793
ISSN 0031-3203
IngestDate Sat Nov 29 07:30:33 EST 2025
Tue Nov 18 22:35:41 EST 2025
Fri Feb 23 02:35:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational autoencoder
Cloud Model
Concept embedded
Deep Learning Interpretability
Disentangled representation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c221t-ee18d639f57e3b4c404ee33eae0e2076b923cd174e77ddb149e2b7f0e4244f793
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2023_109530
crossref_primary_10_1016_j_patcog_2023_109530
elsevier_sciencedirect_doi_10_1016_j_patcog_2023_109530
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gulrajani, Kumar, Ahmed (bib0011) 2017
Jiang, Zheng, Tan (bib0024) 2017
Xie, Girshick, Farhadi (bib0029) 2016
Joo, Lee, Park (bib0019) 2020; 107
Liu, Liu, Zhao (bib0020) 2020; 100
Atanov, Struminsky, Welling (bib0021) 2019
Li, Zhou, Xun (bib0036) 2022; 11
Dupont (bib0035) 2018
Yang, Deng, Liu (bib0033) 2020; 44
Liu, Ng, Zeng (bib0008) 2018; 76
Chen, Kingma, Salimans (bib0009) 2017
Zhou, Lai, Miao (bib0022) 2020; 507
Zhu, Min, Kadav (bib0005) 2020
Kusiak (bib0002) 2020; 58
Xiong, Zuo, Luo (bib0004) 2022; 54
Kipf, Welling (bib0015) 2016
Yang, Deng, Zheng (bib0031) 2019
Cai, Gao, Ji (bib0014) 2019
Dilokthanakul, Mediano, Garnelo (bib0025) 2017
Guo, Gao, Liu (bib0030) 2017
Kingma, Welling (bib0001) 2014
Ding, Xu, Xu (bib0028) 2020
Greco, Guzzo, Nardiello (bib0006) 2020
Zhang, Gao (bib0007) 2021
Demšar (bib0038) 2006; 7
He, Xu, Huang (bib0017) 2022; 121
Tran, Vu, Vo (bib0003) 2022
Sabathé, Coutinho, Schuller (bib0018) 2017
Yang, Deng, Wei (bib0032) 2020; 33
Burda, Grosse, Salakhutdinov (bib0016) 2016
Guo, Dai (bib0012) 2022; 122
Liu, Liu, Li (bib0037) 2023; 263
Nguyen, Nguyen, Liew (bib0010) 2018; 81
Guo, Zhou, Chen (bib0023) 2020; 8
Burgess, Higgins, Pal (bib0026) 2017
Louizos, Swersky, Li (bib0013) 2016
Kim, Mnih (bib0034) 2018
Chen, Li, Grosse (bib0027) 2018
Zhang (10.1016/j.patcog.2023.109530_bib0007) 2021
Greco (10.1016/j.patcog.2023.109530_bib0006) 2020
Nguyen (10.1016/j.patcog.2023.109530_bib0010) 2018; 81
Kim (10.1016/j.patcog.2023.109530_bib0034) 2018
Liu (10.1016/j.patcog.2023.109530_bib0008) 2018; 76
Guo (10.1016/j.patcog.2023.109530_bib0030) 2017
Yang (10.1016/j.patcog.2023.109530_bib0033) 2020; 44
Burda (10.1016/j.patcog.2023.109530_bib0016) 2016
Sabathé (10.1016/j.patcog.2023.109530_bib0018) 2017
Jiang (10.1016/j.patcog.2023.109530_bib0024) 2017
Xiong (10.1016/j.patcog.2023.109530_bib0004) 2022; 54
Atanov (10.1016/j.patcog.2023.109530_bib0021) 2019
Guo (10.1016/j.patcog.2023.109530_bib0012) 2022; 122
Guo (10.1016/j.patcog.2023.109530_bib0023) 2020; 8
Chen (10.1016/j.patcog.2023.109530_bib0027) 2018
Dilokthanakul (10.1016/j.patcog.2023.109530_bib0025) 2017
Ding (10.1016/j.patcog.2023.109530_bib0028) 2020
Louizos (10.1016/j.patcog.2023.109530_bib0013) 2016
Tran (10.1016/j.patcog.2023.109530_bib0003) 2022
Demšar (10.1016/j.patcog.2023.109530_bib0038) 2006; 7
Zhou (10.1016/j.patcog.2023.109530_bib0022) 2020; 507
Chen (10.1016/j.patcog.2023.109530_bib0009) 2017
Dupont (10.1016/j.patcog.2023.109530_bib0035) 2018
Yang (10.1016/j.patcog.2023.109530_bib0031) 2019
Joo (10.1016/j.patcog.2023.109530_bib0019) 2020; 107
Kingma (10.1016/j.patcog.2023.109530_bib0001) 2014
Burgess (10.1016/j.patcog.2023.109530_bib0026) 2017
Liu (10.1016/j.patcog.2023.109530_bib0020) 2020; 100
Yang (10.1016/j.patcog.2023.109530_bib0032) 2020; 33
Cai (10.1016/j.patcog.2023.109530_bib0014) 2019
Zhu (10.1016/j.patcog.2023.109530_bib0005) 2020
He (10.1016/j.patcog.2023.109530_bib0017) 2022; 121
Kusiak (10.1016/j.patcog.2023.109530_bib0002) 2020; 58
Xie (10.1016/j.patcog.2023.109530_bib0029) 2016
Li (10.1016/j.patcog.2023.109530_bib0036) 2022; 11
Gulrajani (10.1016/j.patcog.2023.109530_bib0011) 2017
Kipf (10.1016/j.patcog.2023.109530_bib0015) 2016
Liu (10.1016/j.patcog.2023.109530_bib0037) 2023; 263
References_xml – start-page: 7920
  year: 2020
  end-page: 7929
  ident: bib0028
  article-title: Guided variational autoencoder for disentanglement learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2014
  ident: bib0001
  article-title: Auto-encoding variational bayes
  publication-title: Proceedings of the International Conference on Learning Representations
– volume: 107
  year: 2020
  ident: bib0019
  article-title: Dirichlet variational autoencoder
  publication-title: Pattern Recognit.
– volume: 44
  start-page: 1992
  year: 2020
  end-page: 2003
  ident: bib0033
  article-title: Heterogeneous graph attention network for unsupervised multiple-target domain adaptation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 100
  start-page: 107166
  year: 2020
  ident: bib0020
  article-title: Discovering influential factors in variational autoencoders
  publication-title: Pattern Recognit.
– year: 2019
  ident: bib0021
  article-title: The deep weight prior
  publication-title: Proceedings of the International Conference on Learning Representations
– start-page: 1965
  year: 2017
  end-page: 1972
  ident: bib0024
  article-title: Variational deep embedding: an unsupervised and generative approach to clustering
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence
– start-page: 2649
  year: 2018
  end-page: 2658
  ident: bib0034
  article-title: Disentangling by factorising
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 1
  year: 2016
  end-page: 14
  ident: bib0016
  article-title: Importance weighted autoencoders
  publication-title: Proceedings of the International Conference on Learning Representations
– volume: 507
  start-page: 553
  year: 2020
  end-page: 573
  ident: bib0022
  article-title: Multigranulation rough-fuzzy clustering based on shadowed sets
  publication-title: Inf. Sci.
– year: 2017
  ident: bib0011
  article-title: Pixelvae: a latent variable model for natural images
  publication-title: Proceedings of the International Conference on Learning Representations
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0038
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: bib0009
  article-title: Variational lossy autoencoder
  publication-title: Proceedings of the International Conference on Learning Representations
– start-page: 2615
  year: 2018
  end-page: 2625
  ident: bib0027
  article-title: Isolating sources of disentanglement in VAEs
  publication-title: Proceedings of the 32nd International Conference on Neural Information Processing Systems
– start-page: 630
  year: 2019
  end-page: 638
  ident: bib0014
  article-title: Multi-stage variational autoencoders for coarse-to-fine image generation
  publication-title: Proceedings of the SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics
– start-page: 708
  year: 2018
  end-page: 718
  ident: bib0035
  article-title: Learning disentangled joint continuous and discrete representations
  publication-title: Proceedings of the 32nd International Conference on Neural Information Processing Systems
– start-page: 1
  year: 2017
  end-page: 11
  ident: bib0026
  article-title: Understanding disentangling in β-VAE
  publication-title: Workshop on Learning Disentangled Representations at the 31st Conference on Neural Information Processing Systems
– volume: 76
  start-page: 367
  year: 2018
  end-page: 379
  ident: bib0008
  article-title: Weighted variational model for selective image segmentation with application to medical images
  publication-title: Pattern Recognit.
– volume: 121
  year: 2022
  ident: bib0017
  article-title: Creating synthetic minority class samples based on autoencoder extreme learning machine
  publication-title: Pattern Recognit.
– start-page: 1
  year: 2016
  end-page: 3
  ident: bib0015
  article-title: Variational graph autoencoders
  publication-title: NIPS Workshop on Bayesian Deep Learning
– volume: 81
  start-page: 280
  year: 2018
  end-page: 293
  ident: bib0010
  article-title: Variational inference based bayes online classifiers with concept drift adaptation
  publication-title: Pattern Recognit.
– volume: 8
  start-page: 43992
  year: 2020
  end-page: 44400
  ident: bib0023
  article-title: Variational autoencoder with optimizing gaussian mixture model priors
  publication-title: IEEE Access
– start-page: 188
  year: 2020
  end-page: 197
  ident: bib0006
  article-title: FD-VAE: a feature driven VAE architecture for flexible synthetic data generation
  publication-title: Proceedings of the International Conference on Database and Expert Systems Applications
– volume: 54
  start-page: 783
  year: 2022
  end-page: 806
  ident: bib0004
  article-title: A physically constrained variational autoencoder for geochemical pattern recognition
  publication-title: Math. Geosci.
– volume: 33
  start-page: 9098
  year: 2020
  end-page: 9108
  ident: bib0032
  article-title: Adversarial learning for robust deep clustering
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 478
  year: 2016
  end-page: 487
  ident: bib0029
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: Proceedings of the International conference on machine learning
– start-page: 4066
  year: 2019
  end-page: 4075
  ident: bib0031
  article-title: Deep spectral clustering using dual autoencoder network
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– volume: 122
  year: 2022
  ident: bib0012
  article-title: Graph clustering via variational graph embedding
  publication-title: Pattern Recognit.
– volume: 58
  start-page: 1594
  year: 2020
  end-page: 1604
  ident: bib0002
  article-title: Convolutional and generative adversarial neural networks in manufacturing
  publication-title: Int. J. Prod. Res.
– start-page: 6538
  year: 2020
  end-page: 6547
  ident: bib0005
  article-title: S3vae: self-supervised sequential vae for representation disentanglement and data generation
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1753
  year: 2017
  end-page: 1759
  ident: bib0030
  article-title: Improved deep embedded clustering with local structure preservation
– year: 2021
  ident: bib0007
  article-title: Defending adversaries using unsupervised feature clustering VAE
  publication-title: Proceedings of the International Conference on Machine Learning 2021 Workshop on Adversarial Machine Learning
– volume: 11
  start-page: 60
  year: 2022
  ident: bib0036
  article-title: Evaluation of rural landscape resources based on cloud model and probabilistic linguistic term set
  publication-title: Land
– volume: 263
  start-page: 110261
  year: 2023
  ident: bib0037
  article-title: Cloud-cluster: an uncertainty clustering algorithm based on cloud model
  publication-title: Knowl. Based Syst.
– year: 2022
  ident: bib0003
  article-title: Anomaly analysis in images and videos: a comprehensive review
  publication-title: ACM Comput. Surv. CSUR
– year: 2016
  ident: bib0013
  article-title: The variational fair autoencoder
  publication-title: Proceedings of the International Conference on Learning Representations
– start-page: 3467
  year: 2017
  end-page: 3474
  ident: bib0018
  article-title: Deep recurrent music writer: memory-enhanced variational autoencoder-based musical score composition and an objective measure
  publication-title: Proceedings of the International Joint Conference on Neural Networks
– start-page: 1
  year: 2017
  end-page: 12
  ident: bib0025
  article-title: Deep unsupervised clustering with gaussian mixture variational autoencoders
  publication-title: Proceedings of the International Conference on Learning Representations
– year: 2022
  ident: 10.1016/j.patcog.2023.109530_bib0003
  article-title: Anomaly analysis in images and videos: a comprehensive review
– start-page: 1
  year: 2017
  ident: 10.1016/j.patcog.2023.109530_bib0026
  article-title: Understanding disentangling in β-VAE
– start-page: 1
  year: 2017
  ident: 10.1016/j.patcog.2023.109530_bib0025
  article-title: Deep unsupervised clustering with gaussian mixture variational autoencoders
– year: 2016
  ident: 10.1016/j.patcog.2023.109530_bib0013
  article-title: The variational fair autoencoder
– start-page: 2615
  year: 2018
  ident: 10.1016/j.patcog.2023.109530_bib0027
  article-title: Isolating sources of disentanglement in VAEs
– start-page: 4066
  year: 2019
  ident: 10.1016/j.patcog.2023.109530_bib0031
  article-title: Deep spectral clustering using dual autoencoder network
– volume: 11
  start-page: 60
  issue: 1
  year: 2022
  ident: 10.1016/j.patcog.2023.109530_bib0036
  article-title: Evaluation of rural landscape resources based on cloud model and probabilistic linguistic term set
  publication-title: Land
  doi: 10.3390/land11010060
– volume: 54
  start-page: 783
  year: 2022
  ident: 10.1016/j.patcog.2023.109530_bib0004
  article-title: A physically constrained variational autoencoder for geochemical pattern recognition
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-021-09979-1
– volume: 76
  start-page: 367
  year: 2018
  ident: 10.1016/j.patcog.2023.109530_bib0008
  article-title: Weighted variational model for selective image segmentation with application to medical images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.11.019
– start-page: 630
  year: 2019
  ident: 10.1016/j.patcog.2023.109530_bib0014
  article-title: Multi-stage variational autoencoders for coarse-to-fine image generation
– start-page: 1
  year: 2016
  ident: 10.1016/j.patcog.2023.109530_bib0015
  article-title: Variational graph autoencoders
– volume: 44
  start-page: 1992
  issue: 4
  year: 2020
  ident: 10.1016/j.patcog.2023.109530_bib0033
  article-title: Heterogeneous graph attention network for unsupervised multiple-target domain adaptation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3026079
– volume: 507
  start-page: 553
  year: 2020
  ident: 10.1016/j.patcog.2023.109530_bib0022
  article-title: Multigranulation rough-fuzzy clustering based on shadowed sets
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.05.053
– start-page: 6538
  year: 2020
  ident: 10.1016/j.patcog.2023.109530_bib0005
  article-title: S3vae: self-supervised sequential vae for representation disentanglement and data generation
– start-page: 3467
  year: 2017
  ident: 10.1016/j.patcog.2023.109530_bib0018
  article-title: Deep recurrent music writer: memory-enhanced variational autoencoder-based musical score composition and an objective measure
– volume: 33
  start-page: 9098
  year: 2020
  ident: 10.1016/j.patcog.2023.109530_bib0032
  article-title: Adversarial learning for robust deep clustering
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 107
  year: 2020
  ident: 10.1016/j.patcog.2023.109530_bib0019
  article-title: Dirichlet variational autoencoder
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107514
– year: 2019
  ident: 10.1016/j.patcog.2023.109530_bib0021
  article-title: The deep weight prior
– volume: 121
  year: 2022
  ident: 10.1016/j.patcog.2023.109530_bib0017
  article-title: Creating synthetic minority class samples based on autoencoder extreme learning machine
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108191
– start-page: 188
  year: 2020
  ident: 10.1016/j.patcog.2023.109530_bib0006
  article-title: FD-VAE: a feature driven VAE architecture for flexible synthetic data generation
– year: 2017
  ident: 10.1016/j.patcog.2023.109530_bib0011
  article-title: Pixelvae: a latent variable model for natural images
– start-page: 1
  year: 2016
  ident: 10.1016/j.patcog.2023.109530_bib0016
  article-title: Importance weighted autoencoders
– start-page: 708
  year: 2018
  ident: 10.1016/j.patcog.2023.109530_bib0035
  article-title: Learning disentangled joint continuous and discrete representations
– start-page: 1965
  year: 2017
  ident: 10.1016/j.patcog.2023.109530_bib0024
  article-title: Variational deep embedding: an unsupervised and generative approach to clustering
– year: 2017
  ident: 10.1016/j.patcog.2023.109530_bib0009
  article-title: Variational lossy autoencoder
– start-page: 2649
  year: 2018
  ident: 10.1016/j.patcog.2023.109530_bib0034
  article-title: Disentangling by factorising
– volume: 81
  start-page: 280
  year: 2018
  ident: 10.1016/j.patcog.2023.109530_bib0010
  article-title: Variational inference based bayes online classifiers with concept drift adaptation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.04.007
– year: 2021
  ident: 10.1016/j.patcog.2023.109530_bib0007
  article-title: Defending adversaries using unsupervised feature clustering VAE
– volume: 8
  start-page: 43992
  year: 2020
  ident: 10.1016/j.patcog.2023.109530_bib0023
  article-title: Variational autoencoder with optimizing gaussian mixture model priors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977671
– start-page: 7920
  year: 2020
  ident: 10.1016/j.patcog.2023.109530_bib0028
  article-title: Guided variational autoencoder for disentanglement learning
– start-page: 1753
  year: 2017
  ident: 10.1016/j.patcog.2023.109530_bib0030
  article-title: Improved deep embedded clustering with local structure preservation
– volume: 58
  start-page: 1594
  issue: 5
  year: 2020
  ident: 10.1016/j.patcog.2023.109530_bib0002
  article-title: Convolutional and generative adversarial neural networks in manufacturing
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1662133
– volume: 122
  year: 2022
  ident: 10.1016/j.patcog.2023.109530_bib0012
  article-title: Graph clustering via variational graph embedding
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108334
– volume: 100
  start-page: 107166
  year: 2020
  ident: 10.1016/j.patcog.2023.109530_bib0020
  article-title: Discovering influential factors in variational autoencoders
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107166
– volume: 263
  start-page: 110261
  year: 2023
  ident: 10.1016/j.patcog.2023.109530_bib0037
  article-title: Cloud-cluster: an uncertainty clustering algorithm based on cloud model
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110261
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.patcog.2023.109530_bib0038
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– year: 2014
  ident: 10.1016/j.patcog.2023.109530_bib0001
  article-title: Auto-encoding variational bayes
– start-page: 478
  year: 2016
  ident: 10.1016/j.patcog.2023.109530_bib0029
  article-title: Unsupervised deep embedding for clustering analysis
SSID ssj0017142
Score 2.5364597
Snippet •The initial concepts in latent space are described as prior distribution obtained by the proposed cloud model-based clustering algorithm.•Variational lower...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109530
SubjectTerms Cloud Model
Concept embedded
Deep Learning Interpretability
Disentangled representation
Variational autoencoder
Title Cloud-VAE: Variational autoencoder with concepts embedded
URI https://dx.doi.org/10.1016/j.patcog.2023.109530
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELaWx4ELUKDiUaocuCGjJE7WCYdKK7RVWyGExEMrLpHjTLqLlmQFCYJ_33FsZ3cLakslLtHKijfRfNaXmfHMZ0IOchl0BUhGu7lgNEi9kMYZeFSgsxzneTf2RaMze8rPzqLBID7vdL7YXpjHMS-K6Okpnrwr1DiGYKvW2TfA3f4pDuBvBB2vCDte_wn4k3FZZ_S611fB_jWGwjbdJ-qqVLKVSj3CVpyropaHQ7hLAQlo7szO80Z4UzW7mAqj6X796ahumLuG30ZuRlU9HWoSq8NamG9jc_pXc9cQimdRzuYbfNZWu5kkmG2EmVYdNcTKPMp8V3MVaC6NOKPoj82TrRZnekHcOodwezTBD1D580g9WCldhWbTZl4S-0IrTroM4ycVQ7EFsuTzMEZWW-p97w9-tPtI3Au0Xrx5Pds82VT4vXzW687JjMNxuU5WTaTg9DTCH0gHig2yZk_hcAwpb5K4BfzYmYHbmYHbUXA7Fm7Hwr1Frr72L0--UXMgBpW-71UUwIsydCnzkANLAxm4AQBjIMAF3-XdFL11mWGMCZxnWYrBL_gpz11Q3Yw5MvFHsliUBWwTRwpIw8jNpMD4PuNCpMyTITrDXAnCecEOYdYSiTRq8erQknFiywJvE22_RNkv0fbbIbSdNdFqKX-5n1sjJ8bj055cguvijzN3_3vmHlmZLutPZLG6r2GfLMvHavRw_9ksoF8lPnoB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cloud-VAE%3A+Variational+autoencoder+with+concepts+embedded&rft.jtitle=Pattern+recognition&rft.au=Liu%2C+Yue&rft.au=Liu%2C+Zitu&rft.au=Li%2C+Shuang&rft.au=Yu%2C+Zhenyao&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=140&rft_id=info:doi/10.1016%2Fj.patcog.2023.109530&rft.externalDocID=S0031320323002303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon