A Gröbner-Bases Approach to Syndrome-Based Fast Chase Decoding of Reed-Solomon Codes

We present a simple syndrome-based fast Chase decoding algorithm for Reed-Solomon (RS) codes. Such an algorithm was initially presented by Wu (IEEE Trans. IT, Jan. 2012), building on properties of the Berlekamp-Massey (BM) algorithm. Wu devised a fast polynomial-update algorithm to construct the err...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 68; no. 4; pp. 2300 - 2318
Main Authors: Shany, Yaron, Berman, Amit
Format: Journal Article
Language:English
Published: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a simple syndrome-based fast Chase decoding algorithm for Reed-Solomon (RS) codes. Such an algorithm was initially presented by Wu (IEEE Trans. IT, Jan. 2012), building on properties of the Berlekamp-Massey (BM) algorithm. Wu devised a fast polynomial-update algorithm to construct the error-locator polynomial (ELP) as the solution of a certain linear-feedback shift register (LFSR) synthesis problem. This results in a conceptually complicated algorithm, divided into 8 subtly different cases. Moreover, Wu's polynomial-update algorithm is not immediately suitable for working with vectors of evaluations. Therefore, complicated modifications were required in order to achieve a true "one-pass" Chase decoding algorithm, that is, a Chase decoding algorithm requiring <inline-formula> <tex-math notation="LaTeX">O(n) </tex-math></inline-formula> operations per modified coordinate, where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the RS code length. The main result of the current paper is a conceptually simple syndrome-based fast Chase decoding of RS codes. Instead of developing a theory from scratch, we use the well-established theory of Gröbner bases for modules over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q}[X] </tex-math></inline-formula> (where <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> is the finite field of <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula> elements, for <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula> a prime power). The basic observation is that instead of Wu's LFSR synthesis problem, it is much simpler to consider "the right" minimization problem over a module . The solution to this minimization problem is a simple polynomial-update algorithm that avoids syndrome updates and works seamlessly with vectors of evaluations. As a result, we obtain a conceptually simple algorithm for one-pass Chase decoding of RS codes. Our algorithm is general enough to work with any algorithm that finds a Gröbner basis for the solution module of the key equation as the initial algorithm (including the Euclidean algorithm), and it is not tied only to the BM algorithm.
AbstractList We present a simple syndrome-based fast Chase decoding algorithm for Reed-Solomon (RS) codes. Such an algorithm was initially presented by Wu (IEEE Trans. IT, Jan. 2012), building on properties of the Berlekamp-Massey (BM) algorithm. Wu devised a fast polynomial-update algorithm to construct the error-locator polynomial (ELP) as the solution of a certain linear-feedback shift register (LFSR) synthesis problem. This results in a conceptually complicated algorithm, divided into 8 subtly different cases. Moreover, Wu's polynomial-update algorithm is not immediately suitable for working with vectors of evaluations. Therefore, complicated modifications were required in order to achieve a true "one-pass" Chase decoding algorithm, that is, a Chase decoding algorithm requiring <inline-formula> <tex-math notation="LaTeX">O(n) </tex-math></inline-formula> operations per modified coordinate, where <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is the RS code length. The main result of the current paper is a conceptually simple syndrome-based fast Chase decoding of RS codes. Instead of developing a theory from scratch, we use the well-established theory of Gröbner bases for modules over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q}[X] </tex-math></inline-formula> (where <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> is the finite field of <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula> elements, for <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula> a prime power). The basic observation is that instead of Wu's LFSR synthesis problem, it is much simpler to consider "the right" minimization problem over a module . The solution to this minimization problem is a simple polynomial-update algorithm that avoids syndrome updates and works seamlessly with vectors of evaluations. As a result, we obtain a conceptually simple algorithm for one-pass Chase decoding of RS codes. Our algorithm is general enough to work with any algorithm that finds a Gröbner basis for the solution module of the key equation as the initial algorithm (including the Euclidean algorithm), and it is not tied only to the BM algorithm.
We present a simple syndrome-based fast Chase decoding algorithm for Reed–Solomon (RS) codes. Such an algorithm was initially presented by Wu (IEEE Trans. IT, Jan. 2012), building on properties of the Berlekamp–Massey (BM) algorithm. Wu devised a fast polynomial-update algorithm to construct the error-locator polynomial (ELP) as the solution of a certain linear-feedback shift register (LFSR) synthesis problem. This results in a conceptually complicated algorithm, divided into 8 subtly different cases. Moreover, Wu’s polynomial-update algorithm is not immediately suitable for working with vectors of evaluations. Therefore, complicated modifications were required in order to achieve a true “one-pass” Chase decoding algorithm, that is, a Chase decoding algorithm requiring [Formula Omitted] operations per modified coordinate, where [Formula Omitted] is the RS code length. The main result of the current paper is a conceptually simple syndrome-based fast Chase decoding of RS codes. Instead of developing a theory from scratch, we use the well-established theory of Gröbner bases for modules over [Formula Omitted] (where [Formula Omitted] is the finite field of [Formula Omitted] elements, for [Formula Omitted] a prime power). The basic observation is that instead of Wu’s LFSR synthesis problem, it is much simpler to consider “the right” minimization problem over a module . The solution to this minimization problem is a simple polynomial-update algorithm that avoids syndrome updates and works seamlessly with vectors of evaluations. As a result, we obtain a conceptually simple algorithm for one-pass Chase decoding of RS codes. Our algorithm is general enough to work with any algorithm that finds a Gröbner basis for the solution module of the key equation as the initial algorithm (including the Euclidean algorithm), and it is not tied only to the BM algorithm.
Author Shany, Yaron
Berman, Amit
Author_xml – sequence: 1
  givenname: Yaron
  orcidid: 0000-0001-6149-9755
  surname: Shany
  fullname: Shany, Yaron
  email: yaron.shany@samsung.com
  organization: Samsung Semiconductor Israel Research and Development Center, Tel Aviv, Israel
– sequence: 2
  givenname: Amit
  orcidid: 0000-0003-4502-8093
  surname: Berman
  fullname: Berman, Amit
  email: amit.berman@samsung.com
  organization: Samsung Semiconductor Israel Research and Development Center, Tel Aviv, Israel
BookMark eNp9kM9OAjEQxhuDiYDeTbw08bzYv9vtEVGQhMRE4Lzp7s7KEmixXQ68mC_gi1mEePDgaWYy3zff5NdDHessIHRLyYBSoh8W08WAEcYGnAqSquwCdamUKtGpFB3UJYRmiRYiu0K9ENZxFJKyLloO8cR_fRYWfPJoAgQ83O28M-UKtw7PD7bybgs_qwqPTWjxaBV7_ASlqxr7jl2N3wCqZO42bussHrkKwjW6rM0mwM259tFy_LwYvSSz18l0NJwlJWO0TUCbVBupuOSqYKqWhoPRLCsFSFJqCoJXUghT6cIUUDEFmpVFnQlaUyUz4H10f7obX_7YQ2jztdt7GyNzlgoiIgvFo4qcVKV3IXio851vtsYfckryI7w8wsuP8PIzvGhJ_1jKpjVt42zrTbP5z3h3MjYA8JujU8WoSPk398N9cw
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2025_3566240
crossref_primary_10_1515_nleng_2024_0075
crossref_primary_10_1109_TIT_2023_3263185
crossref_primary_10_1109_TCOMM_2022_3215998
crossref_primary_10_1109_TIT_2023_3321173
Cites_doi 10.1017/cbo9780511808968
10.1007/978-3-642-57189-3_20
10.1109/TIT.1972.1054746
10.1109/18.904511
10.1109/TIT.1966.1053873
10.1109/18.412677
10.1109/TCSII.2013.2251941
10.1109/TIT.2010.2095202
10.1109/TVLSI.2008.2005575
10.1109/TIT.2013.2243800
10.1007/s10623-014-9951-7
10.1109/TIT.2009.2039073
10.1109/TIT.2008.926355
10.1109/MWSCAS.2011.6026354
10.1201/9780429493638
10.1109/TIT.2003.819332
10.1109/TIT.2011.2165524
10.1006/jcom.1997.0439
10.1109/TCOMM.2020.3011991
10.1109/TCOMM.2019.2927207
10.1109/18.782097
10.1016/S0377-0427(96)00120-3
10.1016/j.jsc.2016.11.015
10.1109/TIT.2015.2416068
10.1016/j.jsc.2019.07.026
10.1137/S0895479892230031
10.1109/18.490540
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2022.3140678
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 2318
ExternalDocumentID 10_1109_TIT_2022_3140678
9672146
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c221t-e9a69a573537b27f5a3ea928c4e50c91e43d544ad9babed27e92cbf841f1758e3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000770590900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Jun 29 13:20:11 EDT 2025
Sat Nov 29 03:31:47 EST 2025
Tue Nov 18 21:52:55 EST 2025
Wed Aug 27 02:48:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c221t-e9a69a573537b27f5a3ea928c4e50c91e43d544ad9babed27e92cbf841f1758e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4502-8093
0000-0001-6149-9755
PQID 2640431473
PQPubID 36024
PageCount 19
ParticipantIDs crossref_primary_10_1109_TIT_2022_3140678
ieee_primary_9672146
proquest_journals_2640431473
crossref_citationtrail_10_1109_TIT_2022_3140678
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref32
ref2
MacWilliams (ref17) 1977
ref1
ref19
Cox (ref8) 2005
ref23
Neiger (ref18) 2016
ref26
ref25
ref20
ref22
Shany (ref24) 2017
ref21
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
McEliece (ref16) 2003
References_xml – ident: ref23
  doi: 10.1017/cbo9780511808968
– ident: ref20
  doi: 10.1007/978-3-642-57189-3_20
– ident: ref6
  doi: 10.1109/TIT.1972.1054746
– ident: ref13
  doi: 10.1109/18.904511
– ident: ref10
  doi: 10.1109/TIT.1966.1053873
– volume-title: The Theory of Error-Correcting Codes
  year: 1977
  ident: ref17
– year: 2016
  ident: ref18
  article-title: Bases of relations of one or several variables: Fast algorithms and applications
– ident: ref9
  doi: 10.1109/18.412677
– ident: ref30
  doi: 10.1109/TCSII.2013.2251941
– ident: ref19
  doi: 10.1109/TIT.2010.2095202
– volume-title: Using Algebraic Geometry
  year: 2005
  ident: ref8
– issue: 153
  year: 2003
  ident: ref16
  article-title: The Guruswami–Sudan decoding algorithm for Reed–Solomon codes
– ident: ref32
  doi: 10.1109/TVLSI.2008.2005575
– ident: ref2
  doi: 10.1109/TIT.2013.2243800
– ident: ref21
  doi: 10.1007/s10623-014-9951-7
– ident: ref5
  doi: 10.1109/TIT.2009.2039073
– ident: ref26
  doi: 10.1109/TIT.2008.926355
– ident: ref31
  doi: 10.1109/MWSCAS.2011.6026354
– volume-title: BM-based fast chase decoding of binary BCH codes through degenerate list decoding
  year: 2017
  ident: ref24
– ident: ref1
  doi: 10.1201/9780429493638
– ident: ref15
  doi: 10.1109/TIT.2003.819332
– ident: ref27
  doi: 10.1109/TIT.2011.2165524
– ident: ref25
  doi: 10.1006/jcom.1997.0439
– ident: ref29
  doi: 10.1109/TCOMM.2020.3011991
– ident: ref28
  doi: 10.1109/TCOMM.2019.2927207
– ident: ref11
  doi: 10.1109/18.782097
– ident: ref4
  doi: 10.1016/S0377-0427(96)00120-3
– ident: ref12
  doi: 10.1016/j.jsc.2016.11.015
– ident: ref7
  doi: 10.1109/TIT.2015.2416068
– ident: ref22
  doi: 10.1016/j.jsc.2019.07.026
– ident: ref3
  doi: 10.1137/S0895479892230031
– ident: ref14
  doi: 10.1109/18.490540
SSID ssj0014512
Score 2.4162192
Snippet We present a simple syndrome-based fast Chase decoding algorithm for Reed-Solomon (RS) codes. Such an algorithm was initially presented by Wu (IEEE Trans. IT,...
We present a simple syndrome-based fast Chase decoding algorithm for Reed–Solomon (RS) codes. Such an algorithm was initially presented by Wu (IEEE Trans. IT,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2300
SubjectTerms Algorithms
Codes
Complexity theory
Decoding
Fast Chase decoding algorithms
Fields (mathematics)
Heuristic algorithms
Linear feedback shift registers
Minimization
Modules
Optimization
Polynomials
Reed–Solomon codes
Reliability
soft-decision decoding
Synthesis
Time-domain analysis
Title A Gröbner-Bases Approach to Syndrome-Based Fast Chase Decoding of Reed-Solomon Codes
URI https://ieeexplore.ieee.org/document/9672146
https://www.proquest.com/docview/2640431473
Volume 68
WOSCitedRecordID wos000770590900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61VQ9waGkLYmmLfOCC1LCJY6_j47JlaS8Volupt8iPsaiENtUm5afxB_hjHSfeVREIiZslP2Tl87wy9jcA71SO1GV1FrQ0mRDOkR4MIeNa2tzZcoLe9sUm1NVVdXurv2zB2eYtDCL2l8_wQ2z2uXzfuIf4q2ysJyrWod6GbaXU8FZrkzEQshiYwQsSYIo51inJXI8XlwsKBDmn-FRE5fybCeprqvyhiHvrMt__v329gL3kRbLpAPsBbOHyEPbXFRpYEthDeP6EbvAIbqbs8-rXT7vEVfaRrFfLpolRnHUNu07cBX2XZ3PTdmz2jdrsnELUaOJYE9hXsnbZNWlMOr5s1nhsX8LN_NNidpGlsgqZ47zoMtRmoo1UpSyV5SpIU6LRvHICZe50gaL0UgjjtTUWPVeoubOhEkUgX6PC8hXsLJslvgYW0IpgwkRzaYSrNC0nyKH0PBLleeNHMF5_6dolzvFY-uJ73cceua4JmzpiUydsRvB-M-N-4Nv4x9ijiMVmXIJhBCdrMOskkG1Nfl-kERKqfPP3WcfwLK49XMo5gZ1u9YCnsOt-dHft6m1_1h4BBBLRxA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQcKH2gLpTiQy9IhE0cexMfl6XbVm1XiG6l3iI_xgIJbdAm7U_jD_DHGCfeFQiE1Jsl20nkz_PK2N8AHBUpUpdRiVdSJ0JYS3rQ-4QraVJr8hE60xWbKGaz8uZGfdqAd-u7MIjYHT7D96HZ5fJdbW_Dr7KhGhWhDvUDeCiF4Fl_W2udMxAy67nBMxJhijpWSclUDedncwoFOacIVQT1_IcR6qqq_KWKO_sy3brflz2HZ9GPZOMe-G3YwMUObK1qNLAosjvw9DfCwV24HrOT5c8fZoHL5APZr4aNI6c4a2t2FdkLui7Hprpp2eQLtdlHClKDkWO1Z5_J3iVXpDNpA7NJ7bDZg-vp8XxymsTCConlPGsTVHqktCxymReGF17qHLXipRUoU6syFLmjFdZOGW3Q8QIVt8aXIvPkbZSYv4DNRb3AfWAejfDajxSXWthS0eMEuZSOB6o8p90AhquVrmxkHQ_FL75VXfSRqoqwqQI2VcRmAG_XM773jBv_GbsbsFiPizAM4GAFZhVFsqnI8wtEQqLIX_571ht4fDq_vKguzmbnr-BJeE9_ROcANtvlLb6GR_au_dosD7t99wsXadUL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Gr%C3%B6bner-Bases+Approach+to+Syndrome-Based+Fast+Chase+Decoding+of+Reed%E2%80%93Solomon+Codes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Shany%2C+Yaron&rft.au=Berman%2C+Amit&rft.date=2022-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=68&rft.issue=4&rft.spage=2300&rft_id=info:doi/10.1109%2FTIT.2022.3140678&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon