Input-Output Data-Based Output Antisynchronization Control of Multiagent Systems Using Reinforcement Learning Approach

This article investigates an output antisynchronization problem of multiagent systems by using an input-output data-based reinforcement learning approach. Till now, most of the existing results on antisynchronization problems required full-state information and exact system dynamics in the controlle...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on industrial informatics Ročník 17; číslo 11; s. 7359 - 7367
Hlavní autori: Peng, Zhinan, Zhao, Yiyi, Hu, Jiangping, Luo, Rui, Ghosh, Bijoy Kumar, Nguang, Sing Kiong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1551-3203, 1941-0050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This article investigates an output antisynchronization problem of multiagent systems by using an input-output data-based reinforcement learning approach. Till now, most of the existing results on antisynchronization problems required full-state information and exact system dynamics in the controller design, which is always invalid in practical scenarios. To address this issue, a new system representation is constructed by using just the available input/output data from the multiagent system. Then, a novel value iteration algorithm is proposed to compute the optimal control laws for the agents; moreover, a convergence analysis is presented for the proposed algorithm. In the implementation of the data-based controllers, an actor-critic network structure is established to learn the optimal control laws without the requirement of information of the agent dynamics. An incremental weight updating rule is proposed to improve the learning performance. Finally, simulation results are presented to demonstrate the effectiveness of the proposed antisynchronization control strategy.
AbstractList This article investigates an output antisynchronization problem of multiagent systems by using an input–output data-based reinforcement learning approach. Till now, most of the existing results on antisynchronization problems required full-state information and exact system dynamics in the controller design, which is always invalid in practical scenarios. To address this issue, a new system representation is constructed by using just the available input/output data from the multiagent system. Then, a novel value iteration algorithm is proposed to compute the optimal control laws for the agents; moreover, a convergence analysis is presented for the proposed algorithm. In the implementation of the data-based controllers, an actor–critic network structure is established to learn the optimal control laws without the requirement of information of the agent dynamics. An incremental weight updating rule is proposed to improve the learning performance. Finally, simulation results are presented to demonstrate the effectiveness of the proposed antisynchronization control strategy.
Author Hu, Jiangping
Luo, Rui
Ghosh, Bijoy Kumar
Peng, Zhinan
Zhao, Yiyi
Nguang, Sing Kiong
Author_xml – sequence: 1
  givenname: Zhinan
  surname: Peng
  fullname: Peng, Zhinan
  email: zhinanpeng@126.com
  organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Yiyi
  surname: Zhao
  fullname: Zhao, Yiyi
  email: zhaoyy@swufe.edu.cn
  organization: School of Business Administration, Southwestern University of Finance and Economics, Chengdu, China
– sequence: 3
  givenname: Jiangping
  orcidid: 0000-0002-7559-8604
  surname: Hu
  fullname: Hu, Jiangping
  email: hjp_lzu@163.com
  organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Rui
  surname: Luo
  fullname: Luo, Rui
  email: nicole9922@163.com
  organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Bijoy Kumar
  orcidid: 0000-0001-8123-6549
  surname: Ghosh
  fullname: Ghosh, Bijoy Kumar
  email: bijoy.ghosh@ttu.edu
  organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 6
  givenname: Sing Kiong
  orcidid: 0000-0003-4527-0082
  surname: Nguang
  fullname: Nguang, Sing Kiong
  email: sk.nguang@auckland.ac.nz
  organization: Department of Electrical, Computer, and Software Engineering, The University of Auckland, Auckland, New Zealand
BookMark eNp9UE1PAjEQbQwmAno38bKJ58V-7Ed7RPwiwZAonDdD6UIJtNh2TfDX2xXiwYOnN_PmvZnM66GOsUYhdE3wgBAs7mbj8YBiSgYM57gs-BnqEpGRFMe2E-s8JymjmF2gnvcbjFmJmeiiz7HZNyGdNiFC8gAB0nvwapmcmKEJ2h-MXDtr9BcEbU0ysiY4u01snbw226BhpUxI3g8-qJ1P5l6bVfKmtKmtk2rXziYKnGnp4X7vLMj1JTqvYevV1Qn7aP70OBu9pJPp83g0nKSSUhJSuRQZI4IUtIQl4xkvOFWCM6iLWpRSqgyA8aWgNAPJgRQ8F7DIJCZlvVjkivXR7XFvPPvRKB-qjW2ciScrmudFXCgYj6riqJLOeu9UXUkdfn4NDvS2IrhqM65ixlWbcXXKOBrxH-Pe6R24w3-Wm6NFK6V-5YJRQnLKvgHpvIr4
CODEN ITIICH
CitedBy_id crossref_primary_10_3390_e26010072
crossref_primary_10_1007_s11768_021_00063_x
crossref_primary_10_1016_j_ins_2022_12_008
crossref_primary_10_1016_j_neunet_2023_08_044
crossref_primary_10_1002_rnc_6349
crossref_primary_10_1109_TCNS_2021_3104103
crossref_primary_10_1109_TSMC_2023_3320653
crossref_primary_10_1002_oca_3014
crossref_primary_10_1109_TCSI_2022_3177407
crossref_primary_10_1109_TCNS_2024_3371597
crossref_primary_10_1016_j_inffus_2023_102173
crossref_primary_10_1016_j_engappai_2024_108272
crossref_primary_10_1016_j_ejcon_2023_100889
crossref_primary_10_1016_j_neunet_2023_04_021
crossref_primary_10_1016_j_neucom_2023_126963
crossref_primary_10_1016_j_cnsns_2023_107591
crossref_primary_10_1016_j_eswa_2025_128181
crossref_primary_10_1109_TCSII_2023_3339557
crossref_primary_10_1002_rnc_6530
crossref_primary_10_1109_TASE_2023_3289950
crossref_primary_10_1016_j_eswa_2023_121085
crossref_primary_10_3390_math11040906
crossref_primary_10_1002_rnc_6318
crossref_primary_10_1016_j_nahs_2023_101387
crossref_primary_10_3390_e25020299
crossref_primary_10_1007_s11071_024_10799_1
crossref_primary_10_1109_ACCESS_2023_3296741
crossref_primary_10_1016_j_jfranklin_2021_08_037
crossref_primary_10_1016_j_ins_2022_11_035
crossref_primary_10_1007_s12555_024_0842_z
crossref_primary_10_1016_j_ifacol_2023_10_1670
crossref_primary_10_1080_00207179_2025_2496338
crossref_primary_10_1016_j_isatra_2024_08_026
crossref_primary_10_1109_TAES_2023_3323427
crossref_primary_10_1109_TCSII_2023_3250250
crossref_primary_10_20965_jaciii_2025_p0256
crossref_primary_10_3390_app132111888
crossref_primary_10_1515_jncds_2024_0036
Cites_doi 10.1109/TII.2017.2772088
10.1109/TAC.2012.2224251
10.1109/TIE.2019.2946545
10.1016/j.amc.2018.11.011
10.1109/TCYB.2017.2761878
10.1007/s11432-018-9671-2
10.1016/j.ins.2018.12.079
10.1109/TAC.2016.2616644
10.1177/0278364913495721
10.1109/TAC.2018.2872197
10.1109/TSMCB.2008.2007810
10.1007/978-1-84800-155-8_2
10.1016/j.amc.2019.124821
10.1109/TCYB.2014.2362655
10.1109/TII.2019.2894282
10.1109/TIE.2017.2701778
10.1109/TSMCB.2010.2043839
10.1016/j.physd.2015.05.012
10.1016/j.cnsns.2012.07.005
10.1109/TNNLS.2015.2443064
10.1016/j.physleta.2014.04.070
10.1109/TCYB.2016.2612482
10.1016/j.automatica.2011.03.005
10.1109/TIE.2015.2399394
10.1109/TII.2019.2955966
10.1109/TIE.2016.2542134
10.1016/j.automatica.2015.06.001
10.1109/72.914523
10.1007/s11424-014-2191-0
10.1109/TNN.1998.712192
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2021.3050768
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 7367
ExternalDocumentID 10_1109_TII_2021_3050768
9321152
Genre orig-research
GrantInformation_xml – fundername: Program for New Century Excellent Talents in University
  grantid: NCET-13-0091
  funderid: 10.13039/501100004602
– fundername: National Natural Science Foundation of China
  grantid: 61473061; 61104104; 71503206
  funderid: 10.13039/501100001809
– fundername: Sichuan Science and Technology Program
  grantid: 2020YFSY0012
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c221t-cd943191627ad3848682e983af6f97cce4aa38d9224ac8a16859ab4c017fbb5e3
IEDL.DBID RIE
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679533900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:15:50 EDT 2025
Sat Nov 29 04:16:56 EST 2025
Tue Nov 18 22:22:14 EST 2025
Wed Aug 27 02:40:01 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c221t-cd943191627ad3848682e983af6f97cce4aa38d9224ac8a16859ab4c017fbb5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7559-8604
0000-0003-4527-0082
0000-0001-8123-6549
PQID 2556486938
PQPubID 85507
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TII_2021_3050768
crossref_primary_10_1109_TII_2021_3050768
ieee_primary_9321152
proquest_journals_2556486938
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
hou (ref6) 2009; 39
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref5
References_xml – ident: ref3
  doi: 10.1109/TII.2017.2772088
– ident: ref10
  doi: 10.1109/TAC.2012.2224251
– ident: ref24
  doi: 10.1109/TIE.2019.2946545
– ident: ref9
  doi: 10.1016/j.amc.2018.11.011
– ident: ref22
  doi: 10.1109/TCYB.2017.2761878
– ident: ref23
  doi: 10.1007/s11432-018-9671-2
– ident: ref21
  doi: 10.1016/j.ins.2018.12.079
– ident: ref30
  doi: 10.1109/TAC.2016.2616644
– ident: ref15
  doi: 10.1177/0278364913495721
– ident: ref14
  doi: 10.1109/TAC.2018.2872197
– volume: 39
  start-page: 636
  year: 2009
  ident: ref6
  article-title: Decentralized robust adaptive control for the multiagent system consensus problem using neural networks
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/TSMCB.2008.2007810
– ident: ref1
  doi: 10.1007/978-1-84800-155-8_2
– ident: ref19
  doi: 10.1016/j.amc.2019.124821
– ident: ref7
  doi: 10.1109/TCYB.2014.2362655
– ident: ref20
  doi: 10.1109/TII.2019.2894282
– ident: ref2
  doi: 10.1109/TIE.2017.2701778
– ident: ref25
  doi: 10.1109/TSMCB.2010.2043839
– ident: ref26
  doi: 10.1016/j.physd.2015.05.012
– ident: ref11
  doi: 10.1016/j.cnsns.2012.07.005
– ident: ref8
  doi: 10.1109/TNNLS.2015.2443064
– ident: ref12
  doi: 10.1016/j.physleta.2014.04.070
– ident: ref13
  doi: 10.1109/TCYB.2016.2612482
– ident: ref27
  doi: 10.1016/j.automatica.2011.03.005
– ident: ref4
  doi: 10.1109/TIE.2015.2399394
– ident: ref16
  doi: 10.1109/TII.2019.2955966
– ident: ref18
  doi: 10.1109/TIE.2016.2542134
– ident: ref29
  doi: 10.1016/j.automatica.2015.06.001
– ident: ref28
  doi: 10.1109/72.914523
– ident: ref5
  doi: 10.1007/s11424-014-2191-0
– ident: ref17
  doi: 10.1109/TNN.1998.712192
SSID ssj0037039
Score 2.5096962
Snippet This article investigates an output antisynchronization problem of multiagent systems by using an input-output data-based reinforcement learning approach. Till...
This article investigates an output antisynchronization problem of multiagent systems by using an input–output data-based reinforcement learning approach. Till...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7359
SubjectTerms Artificial neural networks
Control systems design
Control theory
Heuristic algorithms
Incremental actor–critic (AC) network
Informatics
input–output data
Iterative algorithms
Iterative methods
Learning
Multi-agent systems
Multiagent systems
Network topology
optimal antisynchronization
Optimal control
partially observable multiagent systems
reinforcement learning (RL)
Synchronization
System dynamics
Title Input-Output Data-Based Output Antisynchronization Control of Multiagent Systems Using Reinforcement Learning Approach
URI https://ieeexplore.ieee.org/document/9321152
https://www.proquest.com/docview/2556486938
Volume 17
WOSCitedRecordID wos000679533900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9z-KAPfk1xOiUPvghma5t-JI9zOhzIFJmyt5ImqQjSja0b-N97SbOhKIJQ6AdJSftL7i653O8QughoTn1oIckkFyTMRUa4CIW5zWiiPS-3aTpf7pPhkI3H_LGGrtaxMFpru_lMt82l9eWriVyYpbIO2BpgwIDA3UiSuIrVWkldCj2XW27UyCc08OjKJenxzmgwgIlg4LehbxvH0zcVZHOq_BDEVrv0d__Xrj2046xI3K1g30c1XRyg7S_cgg20HBTTRUkeFiWc8I0oBbkGjaWwe9Ityrf5RyEtOW4Vi4l71b51PMmxDcwVJu4KO1JzbHcX4CdtuValXVbEjp71FXcdN_kheu7fjnp3xCVZIDII_JJIxcGGACMxSISiLGQxCzRnVORxzhMpdSgEZYqDqheSCT9mERdZKGEk51kWaXqE6sWk0McIq8SLmR_ncIQhV5LTSPmBVHGUebGneRN1Vv89lY6B3CTCeE_tTMTjKSCVGqRSh1QTXa5rTCv2jT_KNgwy63IOlCZqraBN3fCcp4Z3Db6UU3bye61TtGXeXQUdtlC9nC30GdqUS4Bmdm573iet1dg-
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-wwEB5EBT0P3uXs8ZYHXwTjtk0vyeN6w8V1FVnFt5ImqQjSXbQrnH_vJM0uiiIIhV5IaNpvkpkkM98A7EesZCG2kBZKSBqXsqBCxtLeFiwzQVC6NJ33vazf5w8P4mYGDqexMMYY53xmjuyl28vXQzW2S2VttDXQgMEBd85mzvLRWpNxl6HsCseOmoSURQGbbEoGoj3odnEqGIVHKN126-mTEnJZVb4MxU6_nC__rmUrsOTtSNJpgF-FGVOtwZ8P7ILr8NatRuOaXo9rPJFTWUt6jDpLE_-kU9VPr_8r5ehxm2hMctJ4rpNhSVxorrSRV8TTmhPnX0BujWNbVW5hkXiC1kfS8ezkG3B3fjY4uaA-zQJVURTWVGmBVgSaiVEmNeMxT3lkBGeyTEuRKWViKRnXApW9VFyGKU-ELGKFfbksisSwTZithpX5C0RnQcrDtMQjjoVWgiU6jJROkyJIAyNa0J7891x5DnKbCuM5d3ORQOSIVG6Ryj1SLTiY1hg1_Bs_lF23yEzLeVBasD2BNvcd9DW3zGv4pYLxf9_X2oOFi8FVL-91-5dbsGjf04QgbsNs_TI2OzCv3hCml10nhe8ZBNuH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Input%E2%80%93Output+Data-Based+Output+Antisynchronization+Control+of+Multiagent+Systems+Using+Reinforcement+Learning+Approach&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Peng%2C+Zhinan&rft.au=Zhao%2C+Yiyi&rft.au=Hu%2C+Jiangping&rft.au=Luo%2C+Rui&rft.date=2021-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=17&rft.issue=11&rft.spage=7359&rft_id=info:doi/10.1109%2FTII.2021.3050768&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon