Hybrid quantum-classical scheduling optimization in UAV-enabled IoT networks
This work investigates a scenario in which a swarm of unmanned aerial vehicles serves a set of sensor nodes, adopting the time division multiple access scheme. To ensure fair resource allocation and derive an optimal scheduling plan, a combinatorial problem subject to binary constraints is formulate...
Uloženo v:
| Vydáno v: | Quantum information processing Ročník 22; číslo 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
18.01.2023
|
| Témata: | |
| ISSN: | 1573-1332, 1573-1332 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This work investigates a scenario in which a swarm of unmanned aerial vehicles serves a set of sensor nodes, adopting the time division multiple access scheme. To ensure fair resource allocation and derive an optimal scheduling plan, a combinatorial problem subject to binary constraints is formulated. Thanks to its inherent capabilities, quantum annealing can be used to solve this class of optimization problems. As a result, the original problem is mapped to quadratic unconstrained binary optimization form, in order to be processed by a quantum processing unit. Since state-of-the-art quantum annealers have a limited number of quantum bits (qubits) and limited inter-qubit connectivity, the scheduling plan is obtained by employing a hybrid quantum-classical approach. Then, a comparison with two classical solvers is performed in terms of acquired data, objective function values, and execution time. |
|---|---|
| ISSN: | 1573-1332 1573-1332 |
| DOI: | 10.1007/s11128-022-03805-1 |