Robust Federated Fuzzy C-Means Algorithm in Heterogeneous Scenarios

The federated fuzzy C-means (federated FCM) extends the traditional Fuzzy C-means (FCM) to the federated learning (FL) scenario, aiming to address the data privacy preservation issue of soft clustering in distributed environments. However, a significant challenge persists with existing federated FCM...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 33; číslo 9; s. 3168 - 3181
Hlavní autoři: Zhang, Qixian, Deng, Zhaohong, Zhang, Wei, Zhao, Zhuangzhuang, Xiao, Zhiyong, Choi, Kup-Sze, Wang, Guanjin, Ge, Yuxi, Hu, Shudong
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.09.2025
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The federated fuzzy C-means (federated FCM) extends the traditional Fuzzy C-means (FCM) to the federated learning (FL) scenario, aiming to address the data privacy preservation issue of soft clustering in distributed environments. However, a significant challenge persists with existing federated FCM algorithms, i.e., they struggle to converge effectively in complex heterogeneous scenarios, leading to unstable clustering outcomes. Here the complex heterogeneous scenarios stem from the combination of nonindependently and identically distributed (non-IID) data across different clients (statistical heterogeneity), coupled with the involvement of only some clients in each iteration (systematic heterogeneity). While prior research has attempted to address the impact of statistical heterogeneity in FL scenarios, it has overlooked the issue of system heterogeneity. In response, this article proposes a novel federated FCM algorithm (SC-FFCM) that remains robust even in such complex heterogeneous scenarios. First, the client-side clustering module of SC-FFCM adopts a gradient-based FCM algorithm, facilitating corrections to the direction of local optimization. Second, the algorithm introduces a control variates technique to rectify update bias during the iteration process, thereby mitigating the adverse effects of random client sampling and non-IID data distribution on the algorithm convergence. Finally, the proposed algorithm approximates the ideal federated FCM algorithm. Experimental studies verify the effectiveness of the proposed method.
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2025.3584697