Deep embedded clustering with distribution consistency preservation for attributed networks

•A distribution consistency preserving deep embedded clustering model is proposed.•The model exploits GAE and AE to learn node representations and clusters jointly.•A consistency constraint is designed to maintain the consistency of the clusters.•The empirical study verifies the effectiveness of the...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 139; p. 109469
Main Authors: Zheng, Yimei, Jia, Caiyan, Yu, Jian, Li, Xuanya
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2023
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A distribution consistency preserving deep embedded clustering model is proposed.•The model exploits GAE and AE to learn node representations and clusters jointly.•A consistency constraint is designed to maintain the consistency of the clusters.•The empirical study verifies the effectiveness of the proposed model. Many complex systems in the real world can be characterized as attributed networks. To mine the potential information in these networks, deep embedded clustering, which obtains node representations and clusters simultaneously, has been given much attention in recent years. Under the assumption of consistency for data in different views, the cluster structure of network topology and that of node attributes should be consistent for an attributed network. However, many existing methods ignore this property, even though they separately encode node representations from network topology and node attributes and cluster nodes on representation vectors learned from one of the views. Therefore, in this study, we propose an end-to-end deep embedded clustering model for attributed networks. It utilizes graph autoencoder and node attribute autoencoder to learn node representations and cluster assignments. In addition, a distribution consistency constraint is introduced to maintain the latent consistency of cluster distributions in two views. Extensive experiments on several datasets demonstrate that the proposed model achieves significantly better or competitive performance compared with the state-of-the-art methods. The source code can be found at https://github.com/Zhengymm/DCP.
AbstractList •A distribution consistency preserving deep embedded clustering model is proposed.•The model exploits GAE and AE to learn node representations and clusters jointly.•A consistency constraint is designed to maintain the consistency of the clusters.•The empirical study verifies the effectiveness of the proposed model. Many complex systems in the real world can be characterized as attributed networks. To mine the potential information in these networks, deep embedded clustering, which obtains node representations and clusters simultaneously, has been given much attention in recent years. Under the assumption of consistency for data in different views, the cluster structure of network topology and that of node attributes should be consistent for an attributed network. However, many existing methods ignore this property, even though they separately encode node representations from network topology and node attributes and cluster nodes on representation vectors learned from one of the views. Therefore, in this study, we propose an end-to-end deep embedded clustering model for attributed networks. It utilizes graph autoencoder and node attribute autoencoder to learn node representations and cluster assignments. In addition, a distribution consistency constraint is introduced to maintain the latent consistency of cluster distributions in two views. Extensive experiments on several datasets demonstrate that the proposed model achieves significantly better or competitive performance compared with the state-of-the-art methods. The source code can be found at https://github.com/Zhengymm/DCP.
ArticleNumber 109469
Author Jia, Caiyan
Li, Xuanya
Yu, Jian
Zheng, Yimei
Author_xml – sequence: 1
  givenname: Yimei
  surname: Zheng
  fullname: Zheng, Yimei
  email: ymmzheng@bjtu.edu.cn
  organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 2
  givenname: Caiyan
  surname: Jia
  fullname: Jia, Caiyan
  email: cyjia@bjtu.edu.cn
  organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 3
  givenname: Jian
  surname: Yu
  fullname: Yu, Jian
  email: jianyu@bjtu.edu.cn
  organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 4
  givenname: Xuanya
  surname: Li
  fullname: Li, Xuanya
  email: lixuanya@baidu.com
  organization: Baidu Online Network Technology (Beijing) Co., Ltd, Beijing, 100085, China
BookMark eNqFkMFOAjEQhhuDiYC-gYd9gcW2211aDyYGRU1IvOjJQ9Ntp1iE7aYtEN7ehfXkQU-TmX_-PzPfCA0a3wBC1wRPCCbVzWrSqqT9ckIxLbqRYJU4Q0PCp0VeEkYHaIhxQfKC4uICjWJcYUymnTBEHw8AbQabGowBk-n1NiYIrllme5c-M-NiCq7eJuebTPsmdj00-pC1ASKEnToJ1odMpX6xC2kg7X34ipfo3Kp1hKufOkbv88e32XO-eH16md0vck0pSflUYVtybqwVTFCLgWmKreWk5kJVSgBWmtjSQlFXzGCuhADDKFHM1CXjdTFGt32uDj7GAFZql06XpaDcWhIsj5jkSvaY5BGT7DF1ZvbL3Aa3UeHwn-2ut0H32M5BkFG7jgwYF0Anabz7O-AbA8GJkg
CitedBy_id crossref_primary_10_1016_j_knosys_2024_112928
crossref_primary_10_1016_j_patcog_2023_109764
crossref_primary_10_1109_ACCESS_2025_3593844
crossref_primary_10_1109_TKDE_2024_3389049
crossref_primary_10_1016_j_eqrea_2025_100400
crossref_primary_10_1016_j_neucom_2024_127703
crossref_primary_10_1016_j_patcog_2025_111419
crossref_primary_10_1016_j_neucom_2024_128205
crossref_primary_10_1016_j_ins_2024_121482
crossref_primary_10_1007_s10489_025_06675_z
crossref_primary_10_1016_j_ins_2024_120951
crossref_primary_10_1016_j_neunet_2025_107954
crossref_primary_10_1007_s00530_025_01961_9
crossref_primary_10_1016_j_knosys_2025_114010
crossref_primary_10_1016_j_neucom_2025_130029
Cites_doi 10.1145/3385415
10.1016/j.patcog.2021.108230
10.1016/j.sigpro.2021.108310
10.1109/34.868688
10.1016/j.neucom.2020.04.120
10.3233/IDA-184121
10.1016/j.patcog.2021.108386
10.1016/j.patcog.2018.05.019
10.1109/TKDE.2018.2807452
10.1109/TBDATA.2018.2850013
10.1007/s41109-019-0237-x
10.1016/j.patcog.2021.108334
10.1016/j.patcog.2021.107996
10.1109/TSMC.2019.2897152
10.1109/TKDE.2018.2849727
10.1103/PhysRevE.78.046110
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2023.109469
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2023_109469
S0031320323001693
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c221t-7a0f588dff9492f0e4c20ff81b89a6a9e0ac1f5fe3b64d08a99ed421a4db548b3
ISSN 0031-3203
IngestDate Sat Nov 29 07:26:44 EST 2025
Tue Nov 18 21:01:58 EST 2025
Fri Feb 23 02:37:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph autoencoder
Node representation learning
Autoencoder
Cluster distribution consistency
Deep embedded clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c221t-7a0f588dff9492f0e4c20ff81b89a6a9e0ac1f5fe3b64d08a99ed421a4db548b3
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2023_109469
crossref_primary_10_1016_j_patcog_2023_109469
elsevier_sciencedirect_doi_10_1016_j_patcog_2023_109469
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hafidi, Ghogho, Ciblat, Swami (bib0031) 2022; 190
MacQueen (bib0011) 1967; volume 1
Xie, Girshick, Farhadi (bib0004) 2016; volume 48
Tu, Zhou, Liu, Guo, Cai, Zhu, Cheng (bib0039) 2021
Luo, Yan (bib0016) 2020; volume 12307
Lancichinetti, Fortunato, Radicchi (bib0050) 2008; 78
Pan, Wu, Zhu, Zhang, Wang (bib0023) 2016
Ahmed, Rossi, Zhou, Lee, Kong, Willke, Eldardiry (bib0024) 2017
Zhang, Li, You, Qi, Zhang, Guo, Lin (bib0006) 2019
Zhang, Yin, Zhu, Zhang (bib0021) 2020; 6
Li, Han, Wu (bib0044) 2018
He, Deng, Wang, Li, Zhang, Wang (bib0003) 2020
Wang, Pan, Hu, Long, Jiang, Zhang (bib0002) 2019
Bo, Wang, Shi, Zhu, Lu, Cui (bib0015) 2020
Rifai, Vincent, Muller, Glorot, Bengio (bib0042) 2011
Huang, Zhang, Peng, Dan, Weng, Cai (bib0036) 2020; 404
Cai, Wang, Xu, Guo (bib0034) 2022; 123
Kingma, Welling (bib0030) 2014
Cui, Wang, Pei, Zhu (bib0020) 2019; 31
Li, Qiao, Zhang (bib0018) 2018; 83
Kipf, Welling (bib0001) 2017
Pan, Hu, Long, Jiang, Yao, Zhang (bib0009) 2018
Liu, Zhang, Hou, Mian, Wang, Zhang, Tang (bib0028) 2023; 35
Hong, He, Wu, Ge, Wu (bib0043) 2021; 51
Zhang, Li, Zhang, Li (bib0014) 2022
Guo, Gao, Liu, Yin (bib0017) 2017
Wang, Pan, Yu, Hu, Long, Zhang (bib0038) 2022; 122
Su, Xue, Liu, Wu, Yang, Zhou, Hu, Paris, Nepal, Jin, Sheng, Yu (bib0051) 2022
Vincent, Larochelle, Bengio, Manzagol (bib0041) 2008; volume 307
Huang, Kang, Xu, Liu (bib0005) 2021; 117
Stisen, Blunck, Bhattacharya, Prentow, Kjærgaard, Dey, Sonne, Jensen (bib0048) 2015
Guo, Dai (bib0040) 2022; 122
LeCun, Matan, Boser, Denker, Henderson, Howard, Hubbard, Jacket, Baird (bib0047) 1990
Hamilton, Ying, Leskovec (bib0033) 2017
Lewis, Yang, Rose, Li (bib0049) 2004; 5
Lerique, Abitbol, Karsai (bib0046) 2020; 5
Veličković, Cucurull, Casanova, Romero, Liò, Bengio (bib0037) 2018
Perozzi, Al-Rfou, Skiena (bib0025) 2014
He, Song, Jin, Feng, Zhang, Yu, Zhang (bib0045) 2020
Wang, Pan, Long, Zhu, Jiang (bib0007) 2017
Zhu, Xu, Yu, Liu, Wu, Wang (bib0032) 2020
Gao, Huang (bib0008) 2018
Sun, He, Huang, Sun, Li, Wang, He, Sun, Jia (bib0019) 2020; 14
Yang, Deng, Zheng, Yan, Liu (bib0035) 2019
Kipf, Welling (bib0029) 2016
Cai, Zheng, Chang (bib0022) 2018; 30
Wei, Pan, Hu, Yang, Li, Zhou (bib0027) 2019; 23
Shi, Malik (bib0012) 2000; 22
Park, Lee, Chang, Lee, Choi (bib0013) 2019
Grover, Leskovec (bib0026) 2016
Cui, Zhou, Yang, Liu (bib0010) 2020
Xie (10.1016/j.patcog.2023.109469_bib0004) 2016; volume 48
Veličković (10.1016/j.patcog.2023.109469_bib0037) 2018
Kipf (10.1016/j.patcog.2023.109469_bib0001) 2017
Cai (10.1016/j.patcog.2023.109469_bib0034) 2022; 123
He (10.1016/j.patcog.2023.109469_bib0045) 2020
Rifai (10.1016/j.patcog.2023.109469_bib0042) 2011
Pan (10.1016/j.patcog.2023.109469_bib0023) 2016
Zhang (10.1016/j.patcog.2023.109469_bib0006) 2019
Cui (10.1016/j.patcog.2023.109469_bib0020) 2019; 31
Perozzi (10.1016/j.patcog.2023.109469_bib0025) 2014
Shi (10.1016/j.patcog.2023.109469_bib0012) 2000; 22
Ahmed (10.1016/j.patcog.2023.109469_bib0024) 2017
Lerique (10.1016/j.patcog.2023.109469_bib0046) 2020; 5
Park (10.1016/j.patcog.2023.109469_bib0013) 2019
Hong (10.1016/j.patcog.2023.109469_bib0043) 2021; 51
Sun (10.1016/j.patcog.2023.109469_bib0019) 2020; 14
Kingma (10.1016/j.patcog.2023.109469_bib0030) 2014
Huang (10.1016/j.patcog.2023.109469_bib0005) 2021; 117
Liu (10.1016/j.patcog.2023.109469_bib0028) 2023; 35
Huang (10.1016/j.patcog.2023.109469_bib0036) 2020; 404
Pan (10.1016/j.patcog.2023.109469_bib0009) 2018
Wang (10.1016/j.patcog.2023.109469_bib0007) 2017
Zhu (10.1016/j.patcog.2023.109469_bib0032) 2020
Su (10.1016/j.patcog.2023.109469_bib0051) 2022
Hafidi (10.1016/j.patcog.2023.109469_bib0031) 2022; 190
Tu (10.1016/j.patcog.2023.109469_bib0039) 2021
LeCun (10.1016/j.patcog.2023.109469_bib0047) 1990
Gao (10.1016/j.patcog.2023.109469_bib0008) 2018
He (10.1016/j.patcog.2023.109469_bib0003) 2020
Wei (10.1016/j.patcog.2023.109469_bib0027) 2019; 23
Bo (10.1016/j.patcog.2023.109469_bib0015) 2020
Cui (10.1016/j.patcog.2023.109469_bib0010) 2020
Zhang (10.1016/j.patcog.2023.109469_bib0014) 2022
Grover (10.1016/j.patcog.2023.109469_bib0026) 2016
MacQueen (10.1016/j.patcog.2023.109469_bib0011) 1967; volume 1
Li (10.1016/j.patcog.2023.109469_bib0044) 2018
Wang (10.1016/j.patcog.2023.109469_bib0038) 2022; 122
Cai (10.1016/j.patcog.2023.109469_bib0022) 2018; 30
Yang (10.1016/j.patcog.2023.109469_bib0035) 2019
Vincent (10.1016/j.patcog.2023.109469_bib0041) 2008; volume 307
Guo (10.1016/j.patcog.2023.109469_bib0017) 2017
Lancichinetti (10.1016/j.patcog.2023.109469_bib0050) 2008; 78
Zhang (10.1016/j.patcog.2023.109469_bib0021) 2020; 6
Guo (10.1016/j.patcog.2023.109469_bib0040) 2022; 122
Li (10.1016/j.patcog.2023.109469_bib0018) 2018; 83
Stisen (10.1016/j.patcog.2023.109469_bib0048) 2015
Wang (10.1016/j.patcog.2023.109469_bib0002) 2019
Luo (10.1016/j.patcog.2023.109469_bib0016) 2020; volume 12307
Hamilton (10.1016/j.patcog.2023.109469_bib0033) 2017
Kipf (10.1016/j.patcog.2023.109469_bib0029) 2016
Lewis (10.1016/j.patcog.2023.109469_bib0049) 2004; 5
References_xml – year: 2014
  ident: bib0030
  article-title: Auto-encoding variational bayes
  publication-title: Proceedings of the 2nd International Conference on Learning Representations
– volume: volume 12307
  start-page: 161
  year: 2020
  end-page: 172
  ident: bib0016
  article-title: Adaptive attributed network embedding for community detection
  publication-title: Pattern Recognition and Computer Vision
– start-page: 701
  year: 2014
  end-page: 710
  ident: bib0025
  article-title: Deepwalk: online learning of social representations
  publication-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib0012
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1024
  year: 2017
  end-page: 1034
  ident: bib0033
  article-title: Inductive representation learning on large graphs
  publication-title: Advances in Neural Information Processing Systems 30
– volume: 5
  start-page: 361
  year: 2004
  end-page: 397
  ident: bib0049
  article-title: RCV1: A new benchmark collection for text categorization research
  publication-title: J. Mach. Learn. Res.
– volume: volume 1
  start-page: 281
  year: 1967
  end-page: 297
  ident: bib0011
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability
– volume: 31
  start-page: 833
  year: 2019
  end-page: 852
  ident: bib0020
  article-title: A survey on network embedding
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 35
  start-page: 857
  year: 2023
  end-page: 876
  ident: bib0028
  article-title: Self-supervised learning: generative or contrastive
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 30
  start-page: 1616
  year: 2018
  end-page: 1637
  ident: bib0022
  article-title: A comprehensive survey of graph embedding: problems, techniques, and applications
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 35
  year: 1990
  end-page: 40
  ident: bib0047
  article-title: Handwritten zip code recognition with multilayer networks
  publication-title: Proceedings of the 10th IAPR International Conference on Pattern Recognition
– volume: 122
  start-page: 108334
  year: 2022
  ident: bib0040
  article-title: Graph clustering via variational graph embedding
  publication-title: Pattern Recognit.
– start-page: 3364
  year: 2018
  end-page: 3370
  ident: bib0008
  article-title: Deep attributed network embedding
  publication-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence
– volume: volume 307
  start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib0041
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– year: 2018
  ident: bib0037
  article-title: Graph attention networks
  publication-title: Proceedings of the 6th International Conference on Learning Representations
– start-page: 3670
  year: 2019
  end-page: 3676
  ident: bib0002
  article-title: Attributed graph clustering: a deep attentional embedding approach
  publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence
– start-page: 1
  year: 2022
  end-page: 21
  ident: bib0051
  article-title: A comprehensive survey on community detection with deep learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 5473
  year: 2019
  end-page: 5482
  ident: bib0006
  article-title: Self-supervised convolutional subspace clustering network
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 639
  year: 2020
  end-page: 648
  ident: bib0003
  article-title: Lightgcn: simplifying and powering graph convolution network for recommendation
  publication-title: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval
– volume: volume 48
  start-page: 478
  year: 2016
  end-page: 487
  ident: bib0004
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: Proceedings of the 33rd International Conference on Machine Learning
– start-page: 6518
  year: 2019
  end-page: 6527
  ident: bib0013
  article-title: Symmetric graph convolutional autoencoder for unsupervised graph representation learning
  publication-title: IEEE/CVF International Conference on Computer Vision
– volume: 14
  start-page: 36:1
  year: 2020
  end-page: 36:25
  ident: bib0019
  article-title: Network embedding for community detection in attributed networks
  publication-title: ACM Trans. Knowl. Discov. Data
– start-page: 889
  year: 2017
  end-page: 898
  ident: bib0007
  article-title: MGAE: marginalized graph autoencoder for graph clustering
  publication-title: Proceedings of the 2017 ACM Conference on Information and Knowledge Management
– year: 2017
  ident: bib0001
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proceedings of the 5th International Conference on Learning Representations
– volume: 190
  start-page: 108310
  year: 2022
  ident: bib0031
  article-title: Negative sampling strategies for contrastive self-supervised learning of graph representations
  publication-title: Signal Process.
– volume: 83
  start-page: 161
  year: 2018
  end-page: 173
  ident: bib0018
  article-title: Discriminatively boosted image clustering with fully convolutional auto-encoders
  publication-title: Pattern Recognit.
– start-page: 4066
  year: 2019
  end-page: 4075
  ident: bib0035
  article-title: Deep spectral clustering using dual autoencoder network
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 976
  year: 2020
  end-page: 985
  ident: bib0010
  article-title: Adaptive graph encoder for attributed graph embedding
  publication-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 127
  year: 2015
  end-page: 140
  ident: bib0048
  article-title: Smart devices are different: assessing and mitigating mobile sensing heterogeneities for activity recognition
  publication-title: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems
– start-page: 9978
  year: 2021
  end-page: 9987
  ident: bib0039
  article-title: Deep fusion clustering network
  publication-title: Proceedings of the 35th AAAI Conference on Artificial Intelligence
– start-page: 2609
  year: 2018
  end-page: 2615
  ident: bib0009
  article-title: Adversarially regularized graph autoencoder for graph embedding
  publication-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence
– volume: 51
  start-page: 1434
  year: 2021
  end-page: 1445
  ident: bib0043
  article-title: Deep attributed network embedding by preserving structure and attribute information
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– year: 2017
  ident: bib0024
  article-title: A framework for generalizing graph-based representation learning methods
  publication-title: arXiv preprint arXiv:1709.04596
– year: 2016
  ident: bib0029
  article-title: Variational graph auto-encoders
  publication-title: arXiv preprint arXiv:1611.07308
– volume: 123
  start-page: 108386
  year: 2022
  ident: bib0034
  article-title: Unsupervised deep clustering via contractive feature representation and focal loss
  publication-title: Pattern Recognit.
– volume: 78
  start-page: 046110
  year: 2008
  ident: bib0050
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Phys. Rev. E.
– start-page: 1895
  year: 2016
  end-page: 1901
  ident: bib0023
  article-title: Tri-party deep network representation
  publication-title: Proceedings of the 25th International Joint Conference on Artificial Intelligence
– start-page: 3515
  year: 2020
  end-page: 3521
  ident: bib0045
  article-title: Community-centric graph convolutional network for unsupervised community detection
  publication-title: Proceedings of the 29th International Joint Conference on Artificial Intelligence
– volume: 5
  start-page: 5
  year: 2020
  ident: bib0046
  article-title: Joint embedding of structure and features via graph convolutional networks
  publication-title: Appl. Netw. Sci.
– volume: 404
  start-page: 340
  year: 2020
  end-page: 350
  ident: bib0036
  article-title: Deep subspace clustering to achieve jointly latent feature extraction and discriminative learning
  publication-title: Neurocomputing
– volume: 117
  start-page: 107996
  year: 2021
  ident: bib0005
  article-title: Robust deep k-means: an effective and simple method for data clustering
  publication-title: Pattern Recognit.
– volume: 6
  start-page: 3
  year: 2020
  end-page: 28
  ident: bib0021
  article-title: Network representation learning: a survey
  publication-title: IEEE Trans. Big Data
– volume: 23
  start-page: 877
  year: 2019
  end-page: 893
  ident: bib0027
  article-title: Attributed network representation learning via deepwalk
  publication-title: Intell. Data Anal.
– start-page: 1753
  year: 2017
  end-page: 1759
  ident: bib0017
  article-title: Improved deep embedded clustering with local structure preservation
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence
– year: 2020
  ident: bib0032
  article-title: Deep graph contrastive representation learning
  publication-title: arXiv preprint arXiv:2006.04131
– volume: 122
  start-page: 108230
  year: 2022
  ident: bib0038
  article-title: Deep neighbor-aware embedding for node clustering in attributed graphs
  publication-title: Pattern Recognit.
– start-page: 1
  year: 2022
  end-page: 11
  ident: bib0014
  article-title: Embedding graph auto-encoder for graph clustering
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 855
  year: 2016
  end-page: 864
  ident: bib0026
  article-title: node2vec: Scalable feature learning for networks
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 833
  year: 2011
  end-page: 840
  ident: bib0042
  article-title: Contractive auto-encoders: explicit invariance during feature extraction
  publication-title: Proceedings of the 28th International Conference on Machine Learning
– start-page: 1400
  year: 2020
  end-page: 1410
  ident: bib0015
  article-title: Structural deep clustering network
  publication-title: The Web Conference
– start-page: 3538
  year: 2018
  end-page: 3545
  ident: bib0044
  article-title: Deeper insights into graph convolutional networks for semi-supervised learning
  publication-title: Proceedings of the 32nd AAAI Conference on Artificial Intelligence
– start-page: 833
  year: 2011
  ident: 10.1016/j.patcog.2023.109469_bib0042
  article-title: Contractive auto-encoders: explicit invariance during feature extraction
– start-page: 976
  year: 2020
  ident: 10.1016/j.patcog.2023.109469_bib0010
  article-title: Adaptive graph encoder for attributed graph embedding
– volume: 14
  start-page: 36:1
  issue: 3
  year: 2020
  ident: 10.1016/j.patcog.2023.109469_bib0019
  article-title: Network embedding for community detection in attributed networks
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3385415
– year: 2018
  ident: 10.1016/j.patcog.2023.109469_bib0037
  article-title: Graph attention networks
– volume: 122
  start-page: 108230
  year: 2022
  ident: 10.1016/j.patcog.2023.109469_bib0038
  article-title: Deep neighbor-aware embedding for node clustering in attributed graphs
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108230
– start-page: 5473
  year: 2019
  ident: 10.1016/j.patcog.2023.109469_bib0006
  article-title: Self-supervised convolutional subspace clustering network
– volume: 190
  start-page: 108310
  year: 2022
  ident: 10.1016/j.patcog.2023.109469_bib0031
  article-title: Negative sampling strategies for contrastive self-supervised learning of graph representations
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2021.108310
– year: 2017
  ident: 10.1016/j.patcog.2023.109469_bib0001
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 1024
  year: 2017
  ident: 10.1016/j.patcog.2023.109469_bib0033
  article-title: Inductive representation learning on large graphs
– start-page: 6518
  year: 2019
  ident: 10.1016/j.patcog.2023.109469_bib0013
  article-title: Symmetric graph convolutional autoencoder for unsupervised graph representation learning
– start-page: 1
  year: 2022
  ident: 10.1016/j.patcog.2023.109469_bib0014
  article-title: Embedding graph auto-encoder for graph clustering
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 35
  year: 1990
  ident: 10.1016/j.patcog.2023.109469_bib0047
  article-title: Handwritten zip code recognition with multilayer networks
– volume: volume 48
  start-page: 478
  year: 2016
  ident: 10.1016/j.patcog.2023.109469_bib0004
  article-title: Unsupervised deep embedding for clustering analysis
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 10.1016/j.patcog.2023.109469_bib0012
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– volume: 404
  start-page: 340
  year: 2020
  ident: 10.1016/j.patcog.2023.109469_bib0036
  article-title: Deep subspace clustering to achieve jointly latent feature extraction and discriminative learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.120
– volume: 23
  start-page: 877
  issue: 4
  year: 2019
  ident: 10.1016/j.patcog.2023.109469_bib0027
  article-title: Attributed network representation learning via deepwalk
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-184121
– start-page: 889
  year: 2017
  ident: 10.1016/j.patcog.2023.109469_bib0007
  article-title: MGAE: marginalized graph autoencoder for graph clustering
– year: 2016
  ident: 10.1016/j.patcog.2023.109469_bib0029
  article-title: Variational graph auto-encoders
  publication-title: arXiv preprint arXiv:1611.07308
– volume: 123
  start-page: 108386
  year: 2022
  ident: 10.1016/j.patcog.2023.109469_bib0034
  article-title: Unsupervised deep clustering via contractive feature representation and focal loss
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108386
– volume: volume 1
  start-page: 281
  year: 1967
  ident: 10.1016/j.patcog.2023.109469_bib0011
  article-title: Some methods for classification and analysis of multivariate observations
– start-page: 3538
  year: 2018
  ident: 10.1016/j.patcog.2023.109469_bib0044
  article-title: Deeper insights into graph convolutional networks for semi-supervised learning
– year: 2017
  ident: 10.1016/j.patcog.2023.109469_bib0024
  article-title: A framework for generalizing graph-based representation learning methods
  publication-title: arXiv preprint arXiv:1709.04596
– start-page: 3364
  year: 2018
  ident: 10.1016/j.patcog.2023.109469_bib0008
  article-title: Deep attributed network embedding
– volume: 83
  start-page: 161
  year: 2018
  ident: 10.1016/j.patcog.2023.109469_bib0018
  article-title: Discriminatively boosted image clustering with fully convolutional auto-encoders
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.05.019
– volume: volume 12307
  start-page: 161
  year: 2020
  ident: 10.1016/j.patcog.2023.109469_bib0016
  article-title: Adaptive attributed network embedding for community detection
– year: 2014
  ident: 10.1016/j.patcog.2023.109469_bib0030
  article-title: Auto-encoding variational bayes
– volume: 30
  start-page: 1616
  issue: 9
  year: 2018
  ident: 10.1016/j.patcog.2023.109469_bib0022
  article-title: A comprehensive survey of graph embedding: problems, techniques, and applications
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2807452
– volume: 6
  start-page: 3
  issue: 1
  year: 2020
  ident: 10.1016/j.patcog.2023.109469_bib0021
  article-title: Network representation learning: a survey
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2018.2850013
– start-page: 701
  year: 2014
  ident: 10.1016/j.patcog.2023.109469_bib0025
  article-title: Deepwalk: online learning of social representations
– start-page: 1
  year: 2022
  ident: 10.1016/j.patcog.2023.109469_bib0051
  article-title: A comprehensive survey on community detection with deep learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1753
  year: 2017
  ident: 10.1016/j.patcog.2023.109469_bib0017
  article-title: Improved deep embedded clustering with local structure preservation
– start-page: 9978
  year: 2021
  ident: 10.1016/j.patcog.2023.109469_bib0039
  article-title: Deep fusion clustering network
– volume: 5
  start-page: 5
  issue: 1
  year: 2020
  ident: 10.1016/j.patcog.2023.109469_bib0046
  article-title: Joint embedding of structure and features via graph convolutional networks
  publication-title: Appl. Netw. Sci.
  doi: 10.1007/s41109-019-0237-x
– start-page: 639
  year: 2020
  ident: 10.1016/j.patcog.2023.109469_bib0003
  article-title: Lightgcn: simplifying and powering graph convolution network for recommendation
– start-page: 3670
  year: 2019
  ident: 10.1016/j.patcog.2023.109469_bib0002
  article-title: Attributed graph clustering: a deep attentional embedding approach
– volume: 122
  start-page: 108334
  year: 2022
  ident: 10.1016/j.patcog.2023.109469_bib0040
  article-title: Graph clustering via variational graph embedding
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108334
– volume: volume 307
  start-page: 1096
  year: 2008
  ident: 10.1016/j.patcog.2023.109469_bib0041
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 5
  start-page: 361
  year: 2004
  ident: 10.1016/j.patcog.2023.109469_bib0049
  article-title: RCV1: A new benchmark collection for text categorization research
  publication-title: J. Mach. Learn. Res.
– volume: 117
  start-page: 107996
  year: 2021
  ident: 10.1016/j.patcog.2023.109469_bib0005
  article-title: Robust deep k-means: an effective and simple method for data clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107996
– start-page: 2609
  year: 2018
  ident: 10.1016/j.patcog.2023.109469_bib0009
  article-title: Adversarially regularized graph autoencoder for graph embedding
– volume: 35
  start-page: 857
  issue: 1
  year: 2023
  ident: 10.1016/j.patcog.2023.109469_bib0028
  article-title: Self-supervised learning: generative or contrastive
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 51
  start-page: 1434
  issue: 3
  year: 2021
  ident: 10.1016/j.patcog.2023.109469_bib0043
  article-title: Deep attributed network embedding by preserving structure and attribute information
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2897152
– start-page: 1400
  year: 2020
  ident: 10.1016/j.patcog.2023.109469_bib0015
  article-title: Structural deep clustering network
– start-page: 1895
  year: 2016
  ident: 10.1016/j.patcog.2023.109469_bib0023
  article-title: Tri-party deep network representation
– year: 2020
  ident: 10.1016/j.patcog.2023.109469_bib0032
  article-title: Deep graph contrastive representation learning
  publication-title: arXiv preprint arXiv:2006.04131
– start-page: 3515
  year: 2020
  ident: 10.1016/j.patcog.2023.109469_bib0045
  article-title: Community-centric graph convolutional network for unsupervised community detection
– start-page: 855
  year: 2016
  ident: 10.1016/j.patcog.2023.109469_bib0026
  article-title: node2vec: Scalable feature learning for networks
– volume: 31
  start-page: 833
  issue: 5
  year: 2019
  ident: 10.1016/j.patcog.2023.109469_bib0020
  article-title: A survey on network embedding
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2849727
– volume: 78
  start-page: 046110
  year: 2008
  ident: 10.1016/j.patcog.2023.109469_bib0050
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.78.046110
– start-page: 4066
  year: 2019
  ident: 10.1016/j.patcog.2023.109469_bib0035
  article-title: Deep spectral clustering using dual autoencoder network
– start-page: 127
  year: 2015
  ident: 10.1016/j.patcog.2023.109469_bib0048
  article-title: Smart devices are different: assessing and mitigating mobile sensing heterogeneities for activity recognition
SSID ssj0017142
Score 2.500049
Snippet •A distribution consistency preserving deep embedded clustering model is proposed.•The model exploits GAE and AE to learn node representations and clusters...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109469
SubjectTerms Autoencoder
Cluster distribution consistency
Deep embedded clustering
Graph autoencoder
Node representation learning
Title Deep embedded clustering with distribution consistency preservation for attributed networks
URI https://dx.doi.org/10.1016/j.patcog.2023.109469
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFN6K85AO3ylViO-v4WJUiQFVViYK2cIic2C5btemqu4vKv2ecsZNAES-JS7SK4mQ182kyM_n8DSEvjC6skV4xD7UAk0XBmTa6ZNILNzEeXoFdT_fDntrfL6dTfRDptotunIBq2_LyUs__q6vhHDg7bJ39C3f3N4UT8BucDkdwOxz_yPEvnZtvurPaQUixm83pKkgh9C1XG4Ry44yrQDlfBDeH3ZeBEJsatEitXOKFgR-AXPHFOJM96IQ5w2aYyEAavud__OwwghzNztys5-ggLXfHzL4OiDxadTAaYXSvoxdMVxCkzLglwUVPX419srRXZiAmdbFX5EzwDMOZw3BbKsEgZfs-HqO60ZXYjm2Gk605vKPOj7fCg4MYlsRRLz-oZr9DUcpMQInVCc5cJ-tcFRoC3_r2m93p2_5Tk8olSsrHv5f2V3YkwKvP-nn-MspJDu-QW7GYoNsIgrvkmmvvkdtpUAeNcfs--RQwQRMm6IAJGjBBx5igI0zQMSYoYIIOmKAJEw_I-1e7hzuvWZyqwRrO8yVTJvNFWVrvtdTcZ042PPMeypdSm4nRLjNN7gvvRD2RNiuN1s5Knhtpayhva_GQrLXnrXtEKNwmTDeDjHhSS2VrrbnitQeTW5d56TaISLaqmig5HyafnFaJW3hSoYWrYOEKLbxBWL9qjpIrv7leJTdUMW3EdLAC5Pxy5eN_XvmE3ByA_5SsLS9W7hm50XxZzhYXzyPEvgEE6JfJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+embedded+clustering+with+distribution+consistency+preservation+for+attributed+networks&rft.jtitle=Pattern+recognition&rft.au=Zheng%2C+Yimei&rft.au=Jia%2C+Caiyan&rft.au=Yu%2C+Jian&rft.au=Li%2C+Xuanya&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=139&rft_id=info:doi/10.1016%2Fj.patcog.2023.109469&rft.externalDocID=S0031320323001693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon