Method of alternating projections for the general absolute value equation
A novel approach for solving the general absolute value equation A x + B | x | = c where A , B ∈ I R m × n and c ∈ I R m is presented. We reformulate the equation as a nonconvex feasibility problem which we solve via the method of alternating projections (MAP). The fixed points set of the alternatin...
Uloženo v:
| Vydáno v: | Journal of fixed point theory and applications Ročník 25; číslo 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.02.2023
|
| Témata: | |
| ISSN: | 1661-7738, 1661-7746 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A novel approach for solving the general absolute value equation
A
x
+
B
|
x
|
=
c
where
A
,
B
∈
I
R
m
×
n
and
c
∈
I
R
m
is presented. We reformulate the equation as a nonconvex feasibility problem which we solve via the method of alternating projections (MAP). The fixed points set of the alternating projections map is characterized under nondegeneracy conditions on
A
and
B
. Furthermore, we prove local linear convergence of the algorithm. Unlike most of the existing approaches in the literature, the algorithm presented here is capable of handling problems with
m
≠
n
, both theoretically and numerically. |
|---|---|
| ISSN: | 1661-7738 1661-7746 |
| DOI: | 10.1007/s11784-022-01026-8 |