A robust operators’ cognitive workload recognition method based on denoising masked autoencoder

Identifying the cognitive workload of operators is crucial in complex human-automation collaboration systems. An excessive workload can lead to fatigue or accidents, while an insufficient workload may diminish situational awareness and efficiency. However, existing supervised learning-based methods...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 301; s. 112370
Hlavní autoři: Yu, Xiaoqing, Chen, Chun-Hsien
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 09.10.2024
Témata:
ISSN:0950-7051
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Identifying the cognitive workload of operators is crucial in complex human-automation collaboration systems. An excessive workload can lead to fatigue or accidents, while an insufficient workload may diminish situational awareness and efficiency. However, existing supervised learning-based methods for workload recognition are ineffective when dealing with imperfect input data, such as missing or noisy data, which is not practical in real applications. This study introduces a robust Electroencephalogram (EEG)-enabled cognitive workload recognition model using self-supervised learning. The proposed method, DMAEEG, combines the training strategies of denoising autoencoders and masked autoencoders, demonstrating strong robustness against noisy and incomplete data. More specifically, we adopt the temporal convolutional network and multi-head self-attention mechanisms as the backbone, effectively capturing both the temporal and spatial features from EEG. Extensive experiments are conducted to verify the effectiveness and robustness of the proposed method on an open dataset and a self-collected dataset. The results indicate that DMAEEG performs superior to other state-of-the-art across various evaluation metrics. Moreover, DMAEEG maintains high accuracy in workload inference even when EEG signals are corrupted with a high masking ratio or strong noises. This signifies its superiority in capturing robust intrinsic patterns from imperfect EEG data. The proposed method significantly contributes to decoding EEG signals for workload recognition in real-world applications, thereby enhancing the safety and reliability of human-automation interactions. •A robust cognitive workload recognition approach is proposed.•Self-supervised learning is used to train the model and acquire robust features.•The training strategies of denoising and masked autoencoder are incorporated.•The proposed model performs superior to state-of-the-art baselines.•The accuracy of the model remains high with both sound and corrupted EEG signals.
AbstractList Identifying the cognitive workload of operators is crucial in complex human-automation collaboration systems. An excessive workload can lead to fatigue or accidents, while an insufficient workload may diminish situational awareness and efficiency. However, existing supervised learning-based methods for workload recognition are ineffective when dealing with imperfect input data, such as missing or noisy data, which is not practical in real applications. This study introduces a robust Electroencephalogram (EEG)-enabled cognitive workload recognition model using self-supervised learning. The proposed method, DMAEEG, combines the training strategies of denoising autoencoders and masked autoencoders, demonstrating strong robustness against noisy and incomplete data. More specifically, we adopt the temporal convolutional network and multi-head self-attention mechanisms as the backbone, effectively capturing both the temporal and spatial features from EEG. Extensive experiments are conducted to verify the effectiveness and robustness of the proposed method on an open dataset and a self-collected dataset. The results indicate that DMAEEG performs superior to other state-of-the-art across various evaluation metrics. Moreover, DMAEEG maintains high accuracy in workload inference even when EEG signals are corrupted with a high masking ratio or strong noises. This signifies its superiority in capturing robust intrinsic patterns from imperfect EEG data. The proposed method significantly contributes to decoding EEG signals for workload recognition in real-world applications, thereby enhancing the safety and reliability of human-automation interactions. •A robust cognitive workload recognition approach is proposed.•Self-supervised learning is used to train the model and acquire robust features.•The training strategies of denoising and masked autoencoder are incorporated.•The proposed model performs superior to state-of-the-art baselines.•The accuracy of the model remains high with both sound and corrupted EEG signals.
ArticleNumber 112370
Author Chen, Chun-Hsien
Yu, Xiaoqing
Author_xml – sequence: 1
  givenname: Xiaoqing
  orcidid: 0009-0006-7451-6204
  surname: Yu
  fullname: Yu, Xiaoqing
  email: XIAOQING003@e.ntu.edu.sg
– sequence: 2
  givenname: Chun-Hsien
  orcidid: 0000-0003-2193-5270
  surname: Chen
  fullname: Chen, Chun-Hsien
  email: mchchen@ntu.edu.sg
BookMark eNqFkE1OwzAQhb0oEi1wAxa-QIIncZqGBVJV8SdVYgNry8lMivtjV7Zb1B3X4HqchFTpigWsRvOk9_TeN2ID6ywxdg0iBQHjm2W6si4cQpqJTKYAWV6KARuKqhBJKQo4Z6MQlkKILIPJkOkp967ehcjdlryOzofvzy_euIU10eyJfzi_WjuN3NNJdJZvKL475LUOhLz7kawzwdgF3-iw6jS9i45s45D8JTtr9TrQ1elesLeH-9fZUzJ_eXyeTedJ0zWJSQlSA9albEi3OQJKmckxQt1WgGUt87LNCyxQTAopkYjynCaAUDVQFRXJ_ILd9rmNdyF4alVjoj7WjV6btQKhjoDUUvWA1BGQ6gF1ZvnLvPVmo_3hP9tdb6Nu2N6QV6Ex3W5C0-GKCp35O-AHlZ2J_A
CitedBy_id crossref_primary_10_1016_j_neucom_2025_130418
crossref_primary_10_1016_j_aei_2024_102784
crossref_primary_10_1016_j_aei_2024_102971
crossref_primary_10_1016_j_aei_2025_103506
crossref_primary_10_1016_j_eswa_2025_127418
crossref_primary_10_1080_09544828_2025_2509056
crossref_primary_10_1016_j_aei_2024_103065
crossref_primary_10_1049_bme2_7626919
crossref_primary_10_1016_j_aei_2025_103259
crossref_primary_10_1145_3736574
Cites_doi 10.1088/1741-2552/abbd50
10.1145/3422622
10.1088/1741-2552/ac2bf8
10.1016/j.aei.2023.102123
10.1016/j.neucom.2014.08.092
10.1109/TITS.2023.3316203
10.1016/j.bspc.2011.02.001
10.1080/00207543.2023.2172473
10.1109/TIM.2017.2759398
10.1016/j.bspc.2021.103070
10.1109/TNSRE.2022.3140456
10.1016/j.bspc.2021.103094
10.1109/TNSRE.2022.3201197
10.1007/s10111-018-0464-4
10.1080/00140139.2021.2016998
10.1016/j.knosys.2024.112086
10.3390/s21155019
10.1109/THMS.2014.2366914
10.1016/j.patcog.2017.12.002
10.1016/j.neucom.2020.04.029
10.1016/j.bspc.2024.106046
10.1016/j.neucom.2019.05.108
10.1016/j.neuroimage.2022.119586
10.1145/3503161.3548243
10.1016/j.knosys.2024.111523
10.1109/TNSRE.2019.2913400
10.1016/j.bspc.2021.103292
10.1109/TCDS.2021.3114162
10.1109/CVPR52688.2022.01553
10.1109/TNSRE.2017.2701002
10.1016/j.bspc.2024.106131
10.1145/3577190.3614113
10.1177/00187208221077804
10.1016/j.rcim.2023.102659
10.1109/TNSRE.2022.3174821
10.1109/TPAMI.2023.3314762
10.1109/TNSRE.2018.2872924
10.1109/TCDS.2021.3090217
10.1109/TIE.2023.3288182
10.1145/3582272
10.1016/j.knosys.2022.110179
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2024.112370
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_knosys_2024_112370
S0950705124010049
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
R2-
SBC
SET
UHS
WUQ
~HD
ID FETCH-LOGICAL-c221t-714a1db74ceaf3d1d44246d1bf91d7b437f35d5d08544deee33e81d19c1959e43
ISSN 0950-7051
IngestDate Sat Nov 29 01:33:42 EST 2025
Tue Nov 18 21:24:39 EST 2025
Sat Sep 07 15:51:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Robustness
Masked autoencoder
Cognitive workload
EEG
Self-supervised learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c221t-714a1db74ceaf3d1d44246d1bf91d7b437f35d5d08544deee33e81d19c1959e43
ORCID 0009-0006-7451-6204
0000-0003-2193-5270
ParticipantIDs crossref_citationtrail_10_1016_j_knosys_2024_112370
crossref_primary_10_1016_j_knosys_2024_112370
elsevier_sciencedirect_doi_10_1016_j_knosys_2024_112370
PublicationCentury 2000
PublicationDate 2024-10-09
PublicationDateYYYYMMDD 2024-10-09
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-09
  day: 09
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wu, Zhou, Yang, Huang, Lv (b43) 2023; 45
Tan, Gui, Qiu (b45) 2024; 290
Zhang, Wang, Chen, You, Zhang (b56) 2019; 27
Li, Ng, Simon, Yiu, Lyu (b9) 2023; 260
D. Pulver, P. Angkan, P. Hungler, A. Etemad, EEG-based Cognitive Load Classification using Feature Masked Autoencoding and Emotion Transfer Learning, in: Proceedings of the 25th International Conference on Multimodal Interaction, 2023, pp. 190–197.
Zhou, Xu, Niu, Wang, Wen, Wu, Zhang (b21) 2022; 30
Makowski, Pham, Lau, Brammer, Lespinasse, Pham, Schölzel, Chen (b50) 2021
Li, Struzik, Zhang, Cichocki (b38) 2015; 165
C. Lee, F. Imrie, M. van der Schaar, Self-supervision enhanced feature selection with correlated gates, in: International Conference on Learning Representations, 2022.
Chuang, Chang, Huang, Jung (b13) 2022; 263
Zhang, Yin, Wang (b22) 2014; 45
Pagnotta, Jacobs, de Frutos, Rodríguez, Ibáñez-Gijón, Travieso (b54) 2022; 65
Huang, Liu, Peng (b28) 2022; 71
Wu, Ye, Gu, Zhang, Wang, He (b49) 2022
Yu, Chen, Yang (b7) 2023; 57
K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009.
Cheema, Samima, Sarma, Samanta (b23) 2018
Panagou, Neumann, Fruggiero (b1) 2024; 62
Wang, Han, Peng, Zhao, Fan, Meng, Xu, Niu, Cheng, Liu (b30) 2024; 92
Stergiadis, Kostaridou, Klados (b12) 2022; 72
Fu, Chen, Huang, Chen, Duan, Li, Wu, Jiang, Gao, Gu (b34) 2022; 30
R. Li, Y. Wang, W.-L. Zheng, B.-L. Lu, A multi-view spectral-spatial-temporal masked autoencoder for decoding emotions with self-supervised learning, in: Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 6–14.
Huang, Liu, Peng (b58) 2022; 71
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b33) 2020; 63
Amadori, Fischer, Wang, Demiris (b57) 2022; 14
Klados, Papadelis, Braun, Bamidis (b11) 2011; 6
Ji, Tang, Wang, Xie, Liu, Yin (b29) 2023; 230
Sun, Su, Wu, Wu (b15) 2020; 404
Li, Wu, Xia, He, Jin (b8) 2020; 17
Yang, Wu, Hu, Lv (b27) 2024; 71
Zhang, Zhong, Liu (b36) 2022
Dimitrakopoulos, Kakkos, Dai, Lim, deSouza, Bezerianos, Sun (b20) 2017; 25
van de Merwe, Mallam, Nazir (b5) 2024; 66
Nagar, Kumar (b40) 2022; 30
Jiao, Deng, Luo, Lu (b35) 2020; 408
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b55) 2019; 32
Liu, Zhang, Hou, Mian, Wang, Zhang, Tang (b31) 2021; 35
Leite, Pereira, Gurjao, Veloso (b41) 2018
Kosch, Karolus, Zagermann, Reiterer, Schmidt, Woźniak (b6) 2023; 55
Chen, Xu, Liu, McKeown, Wang (b10) 2017; 67
Rafiei, Gauthier, Adeli, Takabi (b37) 2022
Padhmashree, Bhattacharyya (b18) 2022; 238
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b51) 2017; 30
Yang, Liu, Hu, Nguyen, Guerra, Lv (b3) 2024; 25
Lyu, Li, Lee, Chen (b2) 2024
Zhou, Huang, Xu, Wang, Wu, Zhang (b17) 2021; 14
Jiao, Gao, Wang, Li, Xu (b24) 2018; 76
Chakladar, Dey, Roy, Dogra (b26) 2020; 60
Weng, Gu, Guo, Ma, Yang, Liu, Chen (b32) 2024
Zhang, Zhao, Wei, Mantini, Li, Liu (b14) 2021; 18
Laybidi, Rasoulzadeh, Dianat, Samavati, Jafarabadi, Nazari (b19) 2022; 252
Zhang, Ding, Hui, Liu, Guo, Wang (b4) 2024; 86
Lim, Sourina, Wang (b52) 2018; 26
Cai, Zeng (b39) 2024; 94
Gupta, Taori, Ladekar, Manthalkar, Gajre, Joshi (b25) 2021; 70
Chien, Goh, Sandino, Cheng (b46) 2022
Friedrich, Biermann, Gontar, Biella, Bengler (b53) 2018; 20
Chen, Chen, Chen, Wu (b42) 2021; 21
Chakladar (10.1016/j.knosys.2024.112370_b26) 2020; 60
Kosch (10.1016/j.knosys.2024.112370_b6) 2023; 55
10.1016/j.knosys.2024.112370_b44
Vaswani (10.1016/j.knosys.2024.112370_b51) 2017; 30
Sun (10.1016/j.knosys.2024.112370_b15) 2020; 404
Zhang (10.1016/j.knosys.2024.112370_b22) 2014; 45
Goodfellow (10.1016/j.knosys.2024.112370_b33) 2020; 63
Zhou (10.1016/j.knosys.2024.112370_b17) 2021; 14
Li (10.1016/j.knosys.2024.112370_b38) 2015; 165
Gupta (10.1016/j.knosys.2024.112370_b25) 2021; 70
Pagnotta (10.1016/j.knosys.2024.112370_b54) 2022; 65
Padhmashree (10.1016/j.knosys.2024.112370_b18) 2022; 238
Yu (10.1016/j.knosys.2024.112370_b7) 2023; 57
Panagou (10.1016/j.knosys.2024.112370_b1) 2024; 62
Nagar (10.1016/j.knosys.2024.112370_b40) 2022; 30
Wang (10.1016/j.knosys.2024.112370_b30) 2024; 92
Klados (10.1016/j.knosys.2024.112370_b11) 2011; 6
Huang (10.1016/j.knosys.2024.112370_b28) 2022; 71
Wu (10.1016/j.knosys.2024.112370_b49) 2022
Liu (10.1016/j.knosys.2024.112370_b31) 2021; 35
Yang (10.1016/j.knosys.2024.112370_b27) 2024; 71
Chien (10.1016/j.knosys.2024.112370_b46) 2022
Weng (10.1016/j.knosys.2024.112370_b32) 2024
Stergiadis (10.1016/j.knosys.2024.112370_b12) 2022; 72
Zhang (10.1016/j.knosys.2024.112370_b56) 2019; 27
Leite (10.1016/j.knosys.2024.112370_b41) 2018
10.1016/j.knosys.2024.112370_b48
Tan (10.1016/j.knosys.2024.112370_b45) 2024; 290
10.1016/j.knosys.2024.112370_b47
Laybidi (10.1016/j.knosys.2024.112370_b19) 2022; 252
Friedrich (10.1016/j.knosys.2024.112370_b53) 2018; 20
Paszke (10.1016/j.knosys.2024.112370_b55) 2019; 32
Lyu (10.1016/j.knosys.2024.112370_b2) 2024
Wu (10.1016/j.knosys.2024.112370_b43) 2023; 45
Zhou (10.1016/j.knosys.2024.112370_b21) 2022; 30
Dimitrakopoulos (10.1016/j.knosys.2024.112370_b20) 2017; 25
Cheema (10.1016/j.knosys.2024.112370_b23) 2018
Zhang (10.1016/j.knosys.2024.112370_b4) 2024; 86
Amadori (10.1016/j.knosys.2024.112370_b57) 2022; 14
Zhang (10.1016/j.knosys.2024.112370_b14) 2021; 18
Zhang (10.1016/j.knosys.2024.112370_b36) 2022
Li (10.1016/j.knosys.2024.112370_b8) 2020; 17
10.1016/j.knosys.2024.112370_b16
Chuang (10.1016/j.knosys.2024.112370_b13) 2022; 263
Makowski (10.1016/j.knosys.2024.112370_b50) 2021
Fu (10.1016/j.knosys.2024.112370_b34) 2022; 30
Yang (10.1016/j.knosys.2024.112370_b3) 2024; 25
Rafiei (10.1016/j.knosys.2024.112370_b37) 2022
Chen (10.1016/j.knosys.2024.112370_b42) 2021; 21
Li (10.1016/j.knosys.2024.112370_b9) 2023; 260
Jiao (10.1016/j.knosys.2024.112370_b35) 2020; 408
Huang (10.1016/j.knosys.2024.112370_b58) 2022; 71
van de Merwe (10.1016/j.knosys.2024.112370_b5) 2024; 66
Jiao (10.1016/j.knosys.2024.112370_b24) 2018; 76
Ji (10.1016/j.knosys.2024.112370_b29) 2023; 230
Lim (10.1016/j.knosys.2024.112370_b52) 2018; 26
Chen (10.1016/j.knosys.2024.112370_b10) 2017; 67
Cai (10.1016/j.knosys.2024.112370_b39) 2024; 94
References_xml – volume: 76
  start-page: 582
  year: 2018
  end-page: 595
  ident: b24
  article-title: Deep convolutional neural networks for mental load classification based on EEG data
  publication-title: Pattern Recognit.
– volume: 26
  start-page: 2106
  year: 2018
  end-page: 2114
  ident: b52
  article-title: STEW: Simultaneous task EEG workload data set
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 290
  year: 2024
  ident: b45
  article-title: GAEFS: Self-supervised graph auto-encoder enhanced feature selection
  publication-title: Knowl.-Based Syst.
– volume: 72
  year: 2022
  ident: b12
  article-title: Which BSS method separates better the EEG signals? A comparison of five different algorithms
  publication-title: Biomed. Signal Process. Control
– year: 2022
  ident: b37
  article-title: Self-supervised learning for electroencephalography
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 71
  year: 2022
  ident: b58
  article-title: Recognition of driver’s mental workload based on physiological signals, a comparative study
  publication-title: Biomed. Signal Process. Control
– volume: 238
  year: 2022
  ident: b18
  article-title: Human emotion recognition based on time–frequency analysis of multivariate EEG signal
  publication-title: Knowl.-Based Syst.
– volume: 30
  start-page: 50
  year: 2022
  end-page: 60
  ident: b21
  article-title: Cross-task cognitive workload recognition based on EEG and domain adaptation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: R. Li, Y. Wang, W.-L. Zheng, B.-L. Lu, A multi-view spectral-spatial-temporal masked autoencoder for decoding emotions with self-supervised learning, in: Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 6–14.
– volume: 25
  start-page: 1940
  year: 2017
  end-page: 1949
  ident: b20
  article-title: Task-independent mental workload classification based upon common multiband EEG cortical connectivity
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 67
  start-page: 359
  year: 2017
  end-page: 370
  ident: b10
  article-title: The use of multivariate EMD and CCA for denoising muscle artifacts from few-channel EEG recordings
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 60
  year: 2020
  ident: b26
  article-title: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm
  publication-title: Biomed. Signal Process. Control
– volume: 71
  start-page: 4999
  year: 2024
  end-page: 5009
  ident: b27
  article-title: Real-time driver cognitive workload recognition: Attention-enabled learning with multimodal information fusion
  publication-title: IEEE Trans. Ind. Electron.
– volume: 6
  start-page: 291
  year: 2011
  end-page: 300
  ident: b11
  article-title: REG-ICA: a hybrid methodology combining blind source separation and regression techniques for the rejection of ocular artifacts
  publication-title: Biomed. Signal Process. Control
– volume: 62
  start-page: 974
  year: 2024
  end-page: 990
  ident: b1
  article-title: A scoping review of human robot interaction research towards industry 5.0 human-centric workplaces
  publication-title: Int. J. Prod. Res.
– volume: 27
  start-page: 1149
  year: 2019
  end-page: 1159
  ident: b56
  article-title: Spectral and temporal feature learning with two-stream neural networks for mental workload assessment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 70
  year: 2021
  ident: b25
  article-title: Classification of cross task cognitive workload using deep recurrent network with modelling of temporal dynamics
  publication-title: Biomed. Signal Process. Control
– volume: 230
  year: 2023
  ident: b29
  article-title: Cross-task cognitive workload recognition using a dynamic residual network with attention mechanism based on neurophysiological signals
  publication-title: Biomed. Signal Process. Control
– volume: 21
  start-page: 5019
  year: 2021
  ident: b42
  article-title: Denoising autoencoder-based feature extraction to robust SSVEP-based BCIs
  publication-title: Sensors
– volume: 25
  start-page: 2034
  year: 2024
  end-page: 2045
  ident: b3
  article-title: Quantitative identification of driver distraction: A weakly supervised contrastive learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 32
  year: 2019
  ident: b55
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 260
  year: 2023
  ident: b9
  article-title: Recognising situation awareness associated with different workloads using EEG and eye-tracking features in air traffic control tasks
  publication-title: Knowl.-Based Syst.
– volume: 57
  year: 2023
  ident: b7
  article-title: Air traffic controllers’ mental fatigue recognition: A multi-sensor information fusion-based deep learning approach
  publication-title: Adv. Eng. Inform.
– volume: 20
  start-page: 205
  year: 2018
  end-page: 217
  ident: b53
  article-title: The influence of task load on situation awareness and control strategy in the ATC tower environment
  publication-title: Cogn. Technol. Work
– year: 2024
  ident: b32
  article-title: Self-supervised learning for electroencephalogram: A systematic survey
– start-page: 1
  year: 2021
  end-page: 8
  ident: b50
  article-title: NeuroKit2: A python toolbox for neurophysiological signal processing
  publication-title: Behav. Res. Methods
– volume: 30
  start-page: 2474
  year: 2022
  end-page: 2485
  ident: b40
  article-title: Orthogonal features based EEG signals denoising using fractional and compressed one-dimensional CNN AutoEncoder
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: D. Pulver, P. Angkan, P. Hungler, A. Etemad, EEG-based Cognitive Load Classification using Feature Masked Autoencoding and Emotion Transfer Learning, in: Proceedings of the 25th International Conference on Multimodal Interaction, 2023, pp. 190–197.
– start-page: 2605
  year: 2018
  end-page: 2612
  ident: b41
  article-title: Deep convolutional autoencoder for EEG noise filtering
  publication-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine
– start-page: 265
  year: 2018
  end-page: 284
  ident: b23
  article-title: Mental workload estimation from EEG signals using machine learning algorithms
  publication-title: Engineering Psychology and Cognitive Ergonomics: 15th International Conference, EPCE 2018, Held As Part of HCI International 2018, Las Vegas, NV, USA, July 15-20, 2018, Proceedings 15
– volume: 55
  start-page: 1
  year: 2023
  end-page: 39
  ident: b6
  article-title: A survey on measuring cognitive workload in human-computer interaction
  publication-title: ACM Comput. Surv.
– volume: 18
  year: 2021
  ident: b14
  article-title: EeGdenoiseNet: A benchmark dataset for deep learning solutions of EEG denoising
  publication-title: J. Neural Eng.
– volume: 14
  start-page: 1474
  year: 2022
  end-page: 1485
  ident: b57
  article-title: Predicting secondary task performance: A directly actionable metric for cognitive overload detection
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 92
  year: 2024
  ident: b30
  article-title: LGNet: Learning local–global EEG representations for cognitive workload classification in simulated flights
  publication-title: Biomed. Signal Process. Control
– reference: K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked autoencoders are scalable vision learners, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16000–16009.
– year: 2022
  ident: b49
  article-title: Denoising masked autoencoders help robust classification
– volume: 63
  start-page: 139
  year: 2020
  end-page: 144
  ident: b33
  article-title: Generative adversarial networks
  publication-title: Commun. ACM.
– volume: 252
  year: 2022
  ident: b19
  article-title: Cognitive performance and electroencephalographic variations in air traffic controllers under various mental workload and time of day
  publication-title: Physiol. Behav.
– volume: 45
  start-page: 14745
  year: 2023
  end-page: 14759
  ident: b43
  article-title: Human-guided reinforcement learning with sim-to-real transfer for autonomous navigation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 86
  year: 2024
  ident: b4
  article-title: Skeleton-RGB integrated highly similar human action prediction in human–robot collaborative assembly
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 17
  year: 2020
  ident: b8
  article-title: Review of semi-dry electrodes for EEG recording
  publication-title: J. Neural Eng.
– reference: C. Lee, F. Imrie, M. van der Schaar, Self-supervision enhanced feature selection with correlated gates, in: International Conference on Learning Representations, 2022.
– volume: 66
  start-page: 180
  year: 2024
  end-page: 208
  ident: b5
  article-title: Agent transparency, situation awareness, mental workload, and operator performance: A systematic literature review
  publication-title: Hum. Factors
– volume: 30
  start-page: 1384
  year: 2022
  end-page: 1400
  ident: b34
  article-title: Symmetric convolutional and adversarial neural network enables improved mental stress classification from EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 94
  year: 2024
  ident: b39
  article-title: MAE-EEG-transformer: A transformer-based approach combining masked autoencoder and cross-individual data augmentation pre-training for EEG classification
  publication-title: Biomed. Signal Process. Control
– volume: 14
  start-page: 799
  year: 2021
  end-page: 818
  ident: b17
  article-title: Cognitive workload recognition using EEG signals and machine learning: A review
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 71
  year: 2022
  ident: b28
  article-title: Recognition of driver’s mental workload based on physiological signals, a comparative study
  publication-title: Biomed. Signal Process. Control
– volume: 165
  start-page: 23
  year: 2015
  end-page: 31
  ident: b38
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
– volume: 263
  year: 2022
  ident: b13
  article-title: IC-U-Net: a U-net-based denoising autoencoder using mixtures of independent components for automatic EEG artifact removal
  publication-title: NeuroImage
– volume: 45
  start-page: 200
  year: 2014
  end-page: 214
  ident: b22
  article-title: Recognition of mental workload levels under complex human–machine collaboration by using physiological features and adaptive support vector machines
  publication-title: IEEE Trans. Hum.-Mach. Syst.
– volume: 30
  year: 2017
  ident: b51
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 408
  start-page: 100
  year: 2020
  end-page: 111
  ident: b35
  article-title: Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks
  publication-title: Neurocomputing
– volume: 404
  start-page: 108
  year: 2020
  end-page: 121
  ident: b15
  article-title: A novel end-to-end 1D-ResCNN model to remove artifact from EEG signals
  publication-title: Neurocomputing
– year: 2022
  ident: b46
  article-title: Maeeg: Masked auto-encoder for eeg representation learning
– year: 2024
  ident: b2
  article-title: VALIO: Visual attention-based linear temporal logic method for explainable out-of-the-loop identification
  publication-title: Knowl.-Based Syst.
– volume: 65
  start-page: 1095
  year: 2022
  end-page: 1118
  ident: b54
  article-title: Task difficulty and physiological measures of mental workload in air traffic control: a scoping review
  publication-title: Ergonomics
– volume: 35
  start-page: 857
  year: 2021
  end-page: 876
  ident: b31
  article-title: Self-supervised learning: Generative or contrastive
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2022
  ident: b36
  article-title: GANSER: A self-supervised data augmentation framework for EEG-based emotion recognition
  publication-title: IEEE Trans. Affect Comput.
– volume: 17
  issue: 5
  year: 2020
  ident: 10.1016/j.knosys.2024.112370_b8
  article-title: Review of semi-dry electrodes for EEG recording
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abbd50
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 10.1016/j.knosys.2024.112370_b33
  article-title: Generative adversarial networks
  publication-title: Commun. ACM.
  doi: 10.1145/3422622
– volume: 18
  issue: 5
  year: 2021
  ident: 10.1016/j.knosys.2024.112370_b14
  article-title: EeGdenoiseNet: A benchmark dataset for deep learning solutions of EEG denoising
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac2bf8
– volume: 57
  year: 2023
  ident: 10.1016/j.knosys.2024.112370_b7
  article-title: Air traffic controllers’ mental fatigue recognition: A multi-sensor information fusion-based deep learning approach
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2023.102123
– year: 2022
  ident: 10.1016/j.knosys.2024.112370_b46
– volume: 165
  start-page: 23
  year: 2015
  ident: 10.1016/j.knosys.2024.112370_b38
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.092
– volume: 25
  start-page: 2034
  issue: 2
  year: 2024
  ident: 10.1016/j.knosys.2024.112370_b3
  article-title: Quantitative identification of driver distraction: A weakly supervised contrastive learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3316203
– year: 2024
  ident: 10.1016/j.knosys.2024.112370_b32
– start-page: 2605
  year: 2018
  ident: 10.1016/j.knosys.2024.112370_b41
  article-title: Deep convolutional autoencoder for EEG noise filtering
– volume: 6
  start-page: 291
  issue: 3
  year: 2011
  ident: 10.1016/j.knosys.2024.112370_b11
  article-title: REG-ICA: a hybrid methodology combining blind source separation and regression techniques for the rejection of ocular artifacts
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.02.001
– volume: 62
  start-page: 974
  issue: 3
  year: 2024
  ident: 10.1016/j.knosys.2024.112370_b1
  article-title: A scoping review of human robot interaction research towards industry 5.0 human-centric workplaces
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2023.2172473
– volume: 67
  start-page: 359
  issue: 2
  year: 2017
  ident: 10.1016/j.knosys.2024.112370_b10
  article-title: The use of multivariate EMD and CCA for denoising muscle artifacts from few-channel EEG recordings
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2759398
– volume: 70
  year: 2021
  ident: 10.1016/j.knosys.2024.112370_b25
  article-title: Classification of cross task cognitive workload using deep recurrent network with modelling of temporal dynamics
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103070
– volume: 30
  year: 2017
  ident: 10.1016/j.knosys.2024.112370_b51
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  start-page: 50
  year: 2022
  ident: 10.1016/j.knosys.2024.112370_b21
  article-title: Cross-task cognitive workload recognition based on EEG and domain adaptation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3140456
– volume: 71
  year: 2022
  ident: 10.1016/j.knosys.2024.112370_b58
  article-title: Recognition of driver’s mental workload based on physiological signals, a comparative study
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103094
– year: 2022
  ident: 10.1016/j.knosys.2024.112370_b36
  article-title: GANSER: A self-supervised data augmentation framework for EEG-based emotion recognition
  publication-title: IEEE Trans. Affect Comput.
– volume: 252
  year: 2022
  ident: 10.1016/j.knosys.2024.112370_b19
  article-title: Cognitive performance and electroencephalographic variations in air traffic controllers under various mental workload and time of day
  publication-title: Physiol. Behav.
– year: 2022
  ident: 10.1016/j.knosys.2024.112370_b49
– volume: 230
  year: 2023
  ident: 10.1016/j.knosys.2024.112370_b29
  article-title: Cross-task cognitive workload recognition using a dynamic residual network with attention mechanism based on neurophysiological signals
  publication-title: Biomed. Signal Process. Control
– start-page: 265
  year: 2018
  ident: 10.1016/j.knosys.2024.112370_b23
  article-title: Mental workload estimation from EEG signals using machine learning algorithms
– ident: 10.1016/j.knosys.2024.112370_b44
– volume: 30
  start-page: 2474
  year: 2022
  ident: 10.1016/j.knosys.2024.112370_b40
  article-title: Orthogonal features based EEG signals denoising using fractional and compressed one-dimensional CNN AutoEncoder
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3201197
– volume: 60
  year: 2020
  ident: 10.1016/j.knosys.2024.112370_b26
  article-title: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm
  publication-title: Biomed. Signal Process. Control
– volume: 20
  start-page: 205
  year: 2018
  ident: 10.1016/j.knosys.2024.112370_b53
  article-title: The influence of task load on situation awareness and control strategy in the ATC tower environment
  publication-title: Cogn. Technol. Work
  doi: 10.1007/s10111-018-0464-4
– volume: 65
  start-page: 1095
  issue: 8
  year: 2022
  ident: 10.1016/j.knosys.2024.112370_b54
  article-title: Task difficulty and physiological measures of mental workload in air traffic control: a scoping review
  publication-title: Ergonomics
  doi: 10.1080/00140139.2021.2016998
– year: 2024
  ident: 10.1016/j.knosys.2024.112370_b2
  article-title: VALIO: Visual attention-based linear temporal logic method for explainable out-of-the-loop identification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.112086
– volume: 21
  start-page: 5019
  issue: 15
  year: 2021
  ident: 10.1016/j.knosys.2024.112370_b42
  article-title: Denoising autoencoder-based feature extraction to robust SSVEP-based BCIs
  publication-title: Sensors
  doi: 10.3390/s21155019
– volume: 45
  start-page: 200
  issue: 2
  year: 2014
  ident: 10.1016/j.knosys.2024.112370_b22
  article-title: Recognition of mental workload levels under complex human–machine collaboration by using physiological features and adaptive support vector machines
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2014.2366914
– volume: 76
  start-page: 582
  year: 2018
  ident: 10.1016/j.knosys.2024.112370_b24
  article-title: Deep convolutional neural networks for mental load classification based on EEG data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.12.002
– volume: 404
  start-page: 108
  year: 2020
  ident: 10.1016/j.knosys.2024.112370_b15
  article-title: A novel end-to-end 1D-ResCNN model to remove artifact from EEG signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.029
– volume: 92
  year: 2024
  ident: 10.1016/j.knosys.2024.112370_b30
  article-title: LGNet: Learning local–global EEG representations for cognitive workload classification in simulated flights
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106046
– volume: 408
  start-page: 100
  year: 2020
  ident: 10.1016/j.knosys.2024.112370_b35
  article-title: Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.108
– volume: 35
  start-page: 857
  issue: 1
  year: 2021
  ident: 10.1016/j.knosys.2024.112370_b31
  article-title: Self-supervised learning: Generative or contrastive
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 263
  year: 2022
  ident: 10.1016/j.knosys.2024.112370_b13
  article-title: IC-U-Net: a U-net-based denoising autoencoder using mixtures of independent components for automatic EEG artifact removal
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119586
– ident: 10.1016/j.knosys.2024.112370_b47
  doi: 10.1145/3503161.3548243
– volume: 32
  year: 2019
  ident: 10.1016/j.knosys.2024.112370_b55
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 290
  year: 2024
  ident: 10.1016/j.knosys.2024.112370_b45
  article-title: GAEFS: Self-supervised graph auto-encoder enhanced feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.111523
– start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2024.112370_b50
  article-title: NeuroKit2: A python toolbox for neurophysiological signal processing
  publication-title: Behav. Res. Methods
– volume: 27
  start-page: 1149
  issue: 6
  year: 2019
  ident: 10.1016/j.knosys.2024.112370_b56
  article-title: Spectral and temporal feature learning with two-stream neural networks for mental workload assessment
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2913400
– volume: 72
  year: 2022
  ident: 10.1016/j.knosys.2024.112370_b12
  article-title: Which BSS method separates better the EEG signals? A comparison of five different algorithms
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103292
– volume: 238
  year: 2022
  ident: 10.1016/j.knosys.2024.112370_b18
  article-title: Human emotion recognition based on time–frequency analysis of multivariate EEG signal
  publication-title: Knowl.-Based Syst.
– volume: 14
  start-page: 1474
  issue: 4
  year: 2022
  ident: 10.1016/j.knosys.2024.112370_b57
  article-title: Predicting secondary task performance: A directly actionable metric for cognitive overload detection
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2021.3114162
– ident: 10.1016/j.knosys.2024.112370_b16
  doi: 10.1109/CVPR52688.2022.01553
– volume: 25
  start-page: 1940
  issue: 11
  year: 2017
  ident: 10.1016/j.knosys.2024.112370_b20
  article-title: Task-independent mental workload classification based upon common multiband EEG cortical connectivity
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2701002
– year: 2022
  ident: 10.1016/j.knosys.2024.112370_b37
  article-title: Self-supervised learning for electroencephalography
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 94
  year: 2024
  ident: 10.1016/j.knosys.2024.112370_b39
  article-title: MAE-EEG-transformer: A transformer-based approach combining masked autoencoder and cross-individual data augmentation pre-training for EEG classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106131
– ident: 10.1016/j.knosys.2024.112370_b48
  doi: 10.1145/3577190.3614113
– volume: 66
  start-page: 180
  issue: 1
  year: 2024
  ident: 10.1016/j.knosys.2024.112370_b5
  article-title: Agent transparency, situation awareness, mental workload, and operator performance: A systematic literature review
  publication-title: Hum. Factors
  doi: 10.1177/00187208221077804
– volume: 86
  year: 2024
  ident: 10.1016/j.knosys.2024.112370_b4
  article-title: Skeleton-RGB integrated highly similar human action prediction in human–robot collaborative assembly
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2023.102659
– volume: 71
  year: 2022
  ident: 10.1016/j.knosys.2024.112370_b28
  article-title: Recognition of driver’s mental workload based on physiological signals, a comparative study
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103094
– volume: 30
  start-page: 1384
  year: 2022
  ident: 10.1016/j.knosys.2024.112370_b34
  article-title: Symmetric convolutional and adversarial neural network enables improved mental stress classification from EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3174821
– volume: 45
  start-page: 14745
  issue: 12
  year: 2023
  ident: 10.1016/j.knosys.2024.112370_b43
  article-title: Human-guided reinforcement learning with sim-to-real transfer for autonomous navigation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3314762
– volume: 26
  start-page: 2106
  issue: 11
  year: 2018
  ident: 10.1016/j.knosys.2024.112370_b52
  article-title: STEW: Simultaneous task EEG workload data set
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2872924
– volume: 14
  start-page: 799
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2024.112370_b17
  article-title: Cognitive workload recognition using EEG signals and machine learning: A review
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2021.3090217
– volume: 71
  start-page: 4999
  issue: 5
  year: 2024
  ident: 10.1016/j.knosys.2024.112370_b27
  article-title: Real-time driver cognitive workload recognition: Attention-enabled learning with multimodal information fusion
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2023.3288182
– volume: 55
  start-page: 1
  issue: 13s
  year: 2023
  ident: 10.1016/j.knosys.2024.112370_b6
  article-title: A survey on measuring cognitive workload in human-computer interaction
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3582272
– volume: 260
  year: 2023
  ident: 10.1016/j.knosys.2024.112370_b9
  article-title: Recognising situation awareness associated with different workloads using EEG and eye-tracking features in air traffic control tasks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110179
SSID ssj0002218
Score 2.411695
Snippet Identifying the cognitive workload of operators is crucial in complex human-automation collaboration systems. An excessive workload can lead to fatigue or...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112370
SubjectTerms Cognitive workload
EEG
Masked autoencoder
Robustness
Self-supervised learning
Title A robust operators’ cognitive workload recognition method based on denoising masked autoencoder
URI https://dx.doi.org/10.1016/j.knosys.2024.112370
Volume 301
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002218
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBat00MvafoibpOiQ29GYWXJlnQ0JSFJIRSagm-LdiWDk3TX8a5Djv0b_Xv9JR291qYufUEPXmyx0q71zY5mRzPfIPSWZnI2hKWEWFUIwstSEmkpI8IUYJ1yOZbM-GIT4uJCTqfqQyyr2PhyAqKq5P29WvxXqKENwHaps38BdzcoNMB3AB2OADsc_wj4yWBZF6umHdQL6_fQmxTQoAbrYCEXj3VTa5e7EhtBDEI56YFb2YzbRQCdVM-9M-Gzbq6hTa_a2jFfmhjTG63a98kxR0LXZoMG3Rf9ckBO57q-TQulDyiwccN_VZHTZh5z0qIHYsh9LNtaz22nxkT_YkZEFtlko6plwXGxpbaDB-Hq6Lqq4Q6P3EVcbhMLNUV-IMT-6IZ2I4Mx4vju1EO0MxQjJXtoZ3J2PD3vVmIQQhm4FsOtpNRJH9-3fa2fmyYb5sblHtqN7wl4EvB9ih7Y6hl6kmpw4KiSnyM9wQFu3MH97ctX3AGNE9B4A2gcgMYeLQy_O6BxABpvAP0CfTo5vnx3SmLZDFLCH26JoFxTeNR4afWMGWo4H_KxocVMUSMKzsSMjczIgLHNubHWMmbhrYWq0hENWc5eol5VV3YfYW4zox2_kuCaF7ZQmRa0hI-zYsfW9BFLM5aXkVPelTa5yVPw4FUe5jl385yHee4j0vVaBE6V35wvEhh5tAuDvZeD_Pyy56t_7vkaPV6L-gHqtcuVPUSPyrt23izfREH7DomxjVY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+operators%E2%80%99+cognitive+workload+recognition+method+based+on+denoising+masked+autoencoder&rft.jtitle=Knowledge-based+systems&rft.au=Yu%2C+Xiaoqing&rft.au=Chen%2C+Chun-Hsien&rft.date=2024-10-09&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=301&rft_id=info:doi/10.1016%2Fj.knosys.2024.112370&rft.externalDocID=S0950705124010049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon