Sampling-Based Obstacle Avoidance Path Planning Algorithm for Nuclear Industry Manipulators in Narrow Environments

This article presents an efficient obstacle avoidance path planning algorithm for robotic manipulators, termed Bi-Balanced Rapidly-exploring Random Vine (BBRRV), specifically designed for operational environments in the nuclear industry. The BBRRV algorithm guides the sampling process within an Rapi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE/ASME transactions on mechatronics s. 1 - 11
Hlavní autori: Huang, Ge, Liu, Guanyang, Niu, Yuanzhen, Wu, Dehui, Shen, Chenlin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.01.2025
Predmet:
ISSN:1083-4435, 1941-014X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This article presents an efficient obstacle avoidance path planning algorithm for robotic manipulators, termed Bi-Balanced Rapidly-exploring Random Vine (BBRRV), specifically designed for operational environments in the nuclear industry. The BBRRV algorithm guides the sampling process within an Rapidly-exploring Random Tree (RRT)-based framework using the wrist point position and incorporates a passive compliance control strategy to maintain the pose stability of the end-effector. By balancing exploration and exploitation during sampling, the algorithm dynamically adjusts its behavior according to the current extension state. In cases of extension failure, principal component analysis is employed to reorient the extension direction, thereby improving pathfinding performance in constrained environments. Furthermore, a bi-tree extension strategy is introduced to overcome directional extension limitations. Simulation tests and physical experiments with a compact manipulator demonstrate that BBRRV can efficiently compute feasible path in nuclear-relevant environments containing typical hole-shaped obstacles, exhibiting clear advantages over conventional methods.
AbstractList This article presents an efficient obstacle avoidance path planning algorithm for robotic manipulators, termed Bi-Balanced Rapidly-exploring Random Vine (BBRRV), specifically designed for operational environments in the nuclear industry. The BBRRV algorithm guides the sampling process within an Rapidly-exploring Random Tree (RRT)-based framework using the wrist point position and incorporates a passive compliance control strategy to maintain the pose stability of the end-effector. By balancing exploration and exploitation during sampling, the algorithm dynamically adjusts its behavior according to the current extension state. In cases of extension failure, principal component analysis is employed to reorient the extension direction, thereby improving pathfinding performance in constrained environments. Furthermore, a bi-tree extension strategy is introduced to overcome directional extension limitations. Simulation tests and physical experiments with a compact manipulator demonstrate that BBRRV can efficiently compute feasible path in nuclear-relevant environments containing typical hole-shaped obstacles, exhibiting clear advantages over conventional methods.
Author Niu, Yuanzhen
Huang, Ge
Shen, Chenlin
Liu, Guanyang
Wu, Dehui
Author_xml – sequence: 1
  givenname: Ge
  orcidid: 0000-0001-9495-032X
  surname: Huang
  fullname: Huang, Ge
  email: hg731gz@163.com
  organization: Beihang University School of Mechanical Engineering and Automation, Beijing, China
– sequence: 2
  givenname: Guanyang
  orcidid: 0000-0002-6694-2733
  surname: Liu
  fullname: Liu, Guanyang
  email: gyliu@buaa.edu.cn
  organization: Beihang University School of Mechanical Engineering and Automation, Beijing, China
– sequence: 3
  givenname: Yuanzhen
  orcidid: 0009-0002-5951-2708
  surname: Niu
  fullname: Niu, Yuanzhen
  email: 2905565373@qq.com
  organization: Beihang University School of Mechanical Engineering and Automation, Beijing, China
– sequence: 4
  givenname: Dehui
  surname: Wu
  fullname: Wu, Dehui
  email: 360201314@qq.com
  organization: China Nuclear Power Engineering Company, Ltd., Beijing, China
– sequence: 5
  givenname: Chenlin
  surname: Shen
  fullname: Shen, Chenlin
  email: 2941752152@qq.com
  organization: China Nuclear Power Engineering Company, Ltd., Beijing, China
BookMark eNpFkMluwjAURa2KSgXaH6i68A-EesywpIgWJCapLLqLXmIHXCU2sgMVf99QkLp6V3r33MUZoJ51ViP0TMmIUpK9bpfTyWzECJMjHjPOkuwO9WkmaESo-Op1maQ8EoLLBzQI4ZsQIiihfeQ_oTnUxu6iNwha4XURWihrjccnZxTYUuMNtHu8qcHarobH9c550-4bXDmPV8euCx7PrTqG1p_xEqw5HGtonQ_YWLwC790PntqT8c422rbhEd1XUAf9dLtDtH2fbiezaLH-mE_Gi6hkjLZRDAVVkoBKuJCSE1WUaayYBk0SXnEoKsg0lzIViQKeVqoQVZryUsqySOOSDxG7zpbeheB1lR-8acCfc0ryi7T8T1p-kZbfpHXQyxUyWut_gDJOku79C7CTbbg
CODEN IATEFW
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TMECH.2025.3623279
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-014X
EndPage 11
ExternalDocumentID 10_1109_TMECH_2025_3623279
11230779
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFE0112500
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACKIV
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
IFIPE
IPLJI
JAVBF
LAI
OCL
RIA
RIE
RNS
TN5
5VS
9M8
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IFJZH
M43
VH1
ID FETCH-LOGICAL-c221t-6ab1d50ad7345530dbc86d2eae073f3abfa9e355847da38fdb4f883c55cb86c3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001612910000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1083-4435
IngestDate Sat Nov 29 06:55:21 EST 2025
Wed Nov 19 08:26:46 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c221t-6ab1d50ad7345530dbc86d2eae073f3abfa9e355847da38fdb4f883c55cb86c3
ORCID 0000-0002-6694-2733
0009-0002-5951-2708
0000-0001-9495-032X
PageCount 11
ParticipantIDs crossref_primary_10_1109_TMECH_2025_3623279
ieee_primary_11230779
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE/ASME transactions on mechatronics
PublicationTitleAbbrev TMECH
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0004101
Score 2.4347262
Snippet This article presents an efficient obstacle avoidance path planning algorithm for robotic manipulators, termed Bi-Balanced Rapidly-exploring Random Vine...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Collision avoidance
End effectors
Heuristic algorithms
Industries
Manipulators
Obstacle avoidance
Path planning
Planning
Principal component analysis
Rapidly-exploring Random Tree (RRT)
sampling-based algorithm
Trees (botanical)
Wrist
Title Sampling-Based Obstacle Avoidance Path Planning Algorithm for Nuclear Industry Manipulators in Narrow Environments
URI https://ieeexplore.ieee.org/document/11230779
WOSCitedRecordID wos001612910000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-014X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004101
  issn: 1083-4435
  databaseCode: RIE
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxHlJQ9syG0SJ7EzlqpVB1oq0aFb5GeJBAlK00r8e2wnVbswsEWRI0V359x3zn33AfAUCGKqAiqRCYYYhcKjiIWRQiZYJCOJVrT29CuZTulikcwasrrjwiilXPOZ6tpL9y9fFmJtj8p6BhuYkCTJITgkJK7JWjsSpO-0jn2DKVBoQMCWIeMlvflkOBibWjCIuuZ7jQPbt7WXhfZkVVxWGZ39833OwWkDH2G_9vcFOFD5JTjZGyp4Bcp3ZrvE8yV6MRlKwjduAKBZDPubIpPWyXBmYB_cyhXB_ueyKLPq4wsaAAundsAxK2Gj6fEDJyzPnMhXUa5glsOpG9sIh3sMuTaYj4bzwRg1ygpIBIFfoZhxX0YekwSHVjdIckFjGSimzI7XmHHNEmUHr4dEMky15KGmFIsoEpzGAl-DVl7k6gZAqQMilYx8zrXJcxHHTGiJkyjQAlMPd8Dz1tDpdz0_I3V1h5ekzi2pdUvauKUD2tbKu5WNgW__uH8Hju3j9ZHIPWhV5Vo9gCOxqbJV-eji4xeCkbr8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAEDb8QbD2zIkNhx44ylKiqiDZXo0C3yEyJBgkKpxL_HdlK1CwNbFFlRdHfOfefcdx8A11jGtipgCtlgaKNIBgzxiGpkg0XxODGa1Z4exGnKJpNk1JDVPRdGa-2bz_Stu_T_8lUpv91R2Z3FBjYk42QVrNEowkFN11rQIEOvdhxaVIEiCwPmHJkguRsPe92-rQYxvbVfbIJd59ZSHloSVvF55WHnn2-0C7YbAAk7tcf3wIou9sHW0ljBA1C9cNcnXryie5ujFHwWFgLaxbAzK3Pl3AxHFvjBuWAR7Ly_llU-ffuAFsLC1I045hVsVD1-4JAXuZf5KqsvmBcw9YMbYW-JI3cIxg-9cbePGm0FJDEOp6jNRahowFVMIqccpIRkbYU113bPG8KF4Yl2o9ejWHHCjBKRYYxISqVgbUmOQKsoC30MoDI4VlrRUAhjMx0VhEujSEKxkYQF5ATczA2dfdYTNDJfeQRJ5t2SObdkjVtOwKGz8mJlY-DTP-5fgY3-eDjIBo_p0xnYdI-qD0jOQWtafesLsC5n0_yruvSx8gtmW75D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling-Based+Obstacle+Avoidance+Path+Planning+Algorithm+for+Nuclear+Industry+Manipulators+in+Narrow+Environments&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Huang%2C+Ge&rft.au=Liu%2C+Guanyang&rft.au=Niu%2C+Yuanzhen&rft.au=Wu%2C+Dehui&rft.date=2025-01-01&rft.issn=1083-4435&rft.eissn=1941-014X&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTMECH.2025.3623279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMECH_2025_3623279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon