Sampling-Based Obstacle Avoidance Path Planning Algorithm for Nuclear Industry Manipulators in Narrow Environments
This article presents an efficient obstacle avoidance path planning algorithm for robotic manipulators, termed Bi-Balanced Rapidly-exploring Random Vine (BBRRV), specifically designed for operational environments in the nuclear industry. The BBRRV algorithm guides the sampling process within an Rapi...
Uložené v:
| Vydané v: | IEEE/ASME transactions on mechatronics s. 1 - 11 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.01.2025
|
| Predmet: | |
| ISSN: | 1083-4435, 1941-014X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This article presents an efficient obstacle avoidance path planning algorithm for robotic manipulators, termed Bi-Balanced Rapidly-exploring Random Vine (BBRRV), specifically designed for operational environments in the nuclear industry. The BBRRV algorithm guides the sampling process within an Rapidly-exploring Random Tree (RRT)-based framework using the wrist point position and incorporates a passive compliance control strategy to maintain the pose stability of the end-effector. By balancing exploration and exploitation during sampling, the algorithm dynamically adjusts its behavior according to the current extension state. In cases of extension failure, principal component analysis is employed to reorient the extension direction, thereby improving pathfinding performance in constrained environments. Furthermore, a bi-tree extension strategy is introduced to overcome directional extension limitations. Simulation tests and physical experiments with a compact manipulator demonstrate that BBRRV can efficiently compute feasible path in nuclear-relevant environments containing typical hole-shaped obstacles, exhibiting clear advantages over conventional methods. |
|---|---|
| AbstractList | This article presents an efficient obstacle avoidance path planning algorithm for robotic manipulators, termed Bi-Balanced Rapidly-exploring Random Vine (BBRRV), specifically designed for operational environments in the nuclear industry. The BBRRV algorithm guides the sampling process within an Rapidly-exploring Random Tree (RRT)-based framework using the wrist point position and incorporates a passive compliance control strategy to maintain the pose stability of the end-effector. By balancing exploration and exploitation during sampling, the algorithm dynamically adjusts its behavior according to the current extension state. In cases of extension failure, principal component analysis is employed to reorient the extension direction, thereby improving pathfinding performance in constrained environments. Furthermore, a bi-tree extension strategy is introduced to overcome directional extension limitations. Simulation tests and physical experiments with a compact manipulator demonstrate that BBRRV can efficiently compute feasible path in nuclear-relevant environments containing typical hole-shaped obstacles, exhibiting clear advantages over conventional methods. |
| Author | Niu, Yuanzhen Huang, Ge Shen, Chenlin Liu, Guanyang Wu, Dehui |
| Author_xml | – sequence: 1 givenname: Ge orcidid: 0000-0001-9495-032X surname: Huang fullname: Huang, Ge email: hg731gz@163.com organization: Beihang University School of Mechanical Engineering and Automation, Beijing, China – sequence: 2 givenname: Guanyang orcidid: 0000-0002-6694-2733 surname: Liu fullname: Liu, Guanyang email: gyliu@buaa.edu.cn organization: Beihang University School of Mechanical Engineering and Automation, Beijing, China – sequence: 3 givenname: Yuanzhen orcidid: 0009-0002-5951-2708 surname: Niu fullname: Niu, Yuanzhen email: 2905565373@qq.com organization: Beihang University School of Mechanical Engineering and Automation, Beijing, China – sequence: 4 givenname: Dehui surname: Wu fullname: Wu, Dehui email: 360201314@qq.com organization: China Nuclear Power Engineering Company, Ltd., Beijing, China – sequence: 5 givenname: Chenlin surname: Shen fullname: Shen, Chenlin email: 2941752152@qq.com organization: China Nuclear Power Engineering Company, Ltd., Beijing, China |
| BookMark | eNpFkMluwjAURa2KSgXaH6i68A-EesywpIgWJCapLLqLXmIHXCU2sgMVf99QkLp6V3r33MUZoJ51ViP0TMmIUpK9bpfTyWzECJMjHjPOkuwO9WkmaESo-Op1maQ8EoLLBzQI4ZsQIiihfeQ_oTnUxu6iNwha4XURWihrjccnZxTYUuMNtHu8qcHarobH9c550-4bXDmPV8euCx7PrTqG1p_xEqw5HGtonQ_YWLwC790PntqT8c422rbhEd1XUAf9dLtDtH2fbiezaLH-mE_Gi6hkjLZRDAVVkoBKuJCSE1WUaayYBk0SXnEoKsg0lzIViQKeVqoQVZryUsqySOOSDxG7zpbeheB1lR-8acCfc0ryi7T8T1p-kZbfpHXQyxUyWut_gDJOku79C7CTbbg |
| CODEN | IATEFW |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TMECH.2025.3623279 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-014X |
| EndPage | 11 |
| ExternalDocumentID | 10_1109_TMECH_2025_3623279 11230779 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022YFE0112500 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACKIV AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P IFIPE IPLJI JAVBF LAI OCL RIA RIE RNS TN5 5VS 9M8 AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IFJZH M43 VH1 |
| ID | FETCH-LOGICAL-c221t-6ab1d50ad7345530dbc86d2eae073f3abfa9e355847da38fdb4f883c55cb86c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001612910000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1083-4435 |
| IngestDate | Sat Nov 29 06:55:21 EST 2025 Wed Nov 19 08:26:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c221t-6ab1d50ad7345530dbc86d2eae073f3abfa9e355847da38fdb4f883c55cb86c3 |
| ORCID | 0000-0002-6694-2733 0009-0002-5951-2708 0000-0001-9495-032X |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TMECH_2025_3623279 ieee_primary_11230779 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE/ASME transactions on mechatronics |
| PublicationTitleAbbrev | TMECH |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0004101 |
| Score | 2.4347262 |
| Snippet | This article presents an efficient obstacle avoidance path planning algorithm for robotic manipulators, termed Bi-Balanced Rapidly-exploring Random Vine... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Collision avoidance End effectors Heuristic algorithms Industries Manipulators Obstacle avoidance Path planning Planning Principal component analysis Rapidly-exploring Random Tree (RRT) sampling-based algorithm Trees (botanical) Wrist |
| Title | Sampling-Based Obstacle Avoidance Path Planning Algorithm for Nuclear Industry Manipulators in Narrow Environments |
| URI | https://ieeexplore.ieee.org/document/11230779 |
| WOSCitedRecordID | wos001612910000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-014X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004101 issn: 1083-4435 databaseCode: RIE dateStart: 19960101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxHlJQ9syG0SJ7EzlqpVB1oq0aFb5GeJBAlK00r8e2wnVbswsEWRI0V359x3zn33AfAUCGKqAiqRCYYYhcKjiIWRQiZYJCOJVrT29CuZTulikcwasrrjwiilXPOZ6tpL9y9fFmJtj8p6BhuYkCTJITgkJK7JWjsSpO-0jn2DKVBoQMCWIeMlvflkOBibWjCIuuZ7jQPbt7WXhfZkVVxWGZ39833OwWkDH2G_9vcFOFD5JTjZGyp4Bcp3ZrvE8yV6MRlKwjduAKBZDPubIpPWyXBmYB_cyhXB_ueyKLPq4wsaAAundsAxK2Gj6fEDJyzPnMhXUa5glsOpG9sIh3sMuTaYj4bzwRg1ygpIBIFfoZhxX0YekwSHVjdIckFjGSimzI7XmHHNEmUHr4dEMky15KGmFIsoEpzGAl-DVl7k6gZAqQMilYx8zrXJcxHHTGiJkyjQAlMPd8Dz1tDpdz0_I3V1h5ekzi2pdUvauKUD2tbKu5WNgW__uH8Hju3j9ZHIPWhV5Vo9gCOxqbJV-eji4xeCkbr8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAEDb8QbD2zIkNhx44ylKiqiDZXo0C3yEyJBgkKpxL_HdlK1CwNbFFlRdHfOfefcdx8A11jGtipgCtlgaKNIBgzxiGpkg0XxODGa1Z4exGnKJpNk1JDVPRdGa-2bz_Stu_T_8lUpv91R2Z3FBjYk42QVrNEowkFN11rQIEOvdhxaVIEiCwPmHJkguRsPe92-rQYxvbVfbIJd59ZSHloSVvF55WHnn2-0C7YbAAk7tcf3wIou9sHW0ljBA1C9cNcnXryie5ujFHwWFgLaxbAzK3Pl3AxHFvjBuWAR7Ly_llU-ffuAFsLC1I045hVsVD1-4JAXuZf5KqsvmBcw9YMbYW-JI3cIxg-9cbePGm0FJDEOp6jNRahowFVMIqccpIRkbYU113bPG8KF4Yl2o9ejWHHCjBKRYYxISqVgbUmOQKsoC30MoDI4VlrRUAhjMx0VhEujSEKxkYQF5ATczA2dfdYTNDJfeQRJ5t2SObdkjVtOwKGz8mJlY-DTP-5fgY3-eDjIBo_p0xnYdI-qD0jOQWtafesLsC5n0_yruvSx8gtmW75D |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling-Based+Obstacle+Avoidance+Path+Planning+Algorithm+for+Nuclear+Industry+Manipulators+in+Narrow+Environments&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Huang%2C+Ge&rft.au=Liu%2C+Guanyang&rft.au=Niu%2C+Yuanzhen&rft.au=Wu%2C+Dehui&rft.date=2025-01-01&rft.issn=1083-4435&rft.eissn=1941-014X&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTMECH.2025.3623279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMECH_2025_3623279 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon |