Arithmetic coding in lossless waveform compression
A method for applying arithmetic coding to lossless waveform compression is discussed. Arithmetic coding has been used widely in lossless text compression and is known to produce compression ratios that are nearly optimal when the symbol table consists of an ordinary alphabet. In lossless compressio...
Saved in:
| Published in: | IEEE transactions on signal processing Vol. 43; no. 8; pp. 1874 - 1879 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.08.1995
Institute of Electrical and Electronics Engineers |
| Subjects: | |
| ISSN: | 1053-587X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A method for applying arithmetic coding to lossless waveform compression is discussed. Arithmetic coding has been used widely in lossless text compression and is known to produce compression ratios that are nearly optimal when the symbol table consists of an ordinary alphabet. In lossless compression of digitized waveform data, however, if each possible sample value is viewed as a "symbol" the symbol table would be typically very large and impractical. the authors therefore define a symbol to be a certain range of possible waveform values, rather than a single value, and develop a coding scheme on this basis. The coding scheme consists of two compression stages. The first stage is lossless linear prediction, which removes coherent components from a digitized waveform and produces a residue sequence that is assumed to have a white spectrum and a Gaussian amplitude distribution. The prediction is lossless in the sense that the original digitized waveform can be recovered by processing the residue sequence. The second stage, which is the subject of the present paper, is arithmetic coding used as just described. A formula for selecting ranges of waveform values is provided. Experiments with seismic and speech waveforms that produce near-optimal results are included.< > |
|---|---|
| AbstractList | A method for applying arithmetic coding to lossless waveform compression is discussed. Arithmetic coding has been used widely in lossless text compression and is known to produce compression ratios that are nearly optimal when the symbol table consists of an ordinary alphabet. In lossless compression of digitized waveform data, however, if each possible sample value is viewed as a "symbol" the symbol table would be typically very large and impractical. the authors therefore define a symbol to be a certain range of possible waveform values, rather than a single value, and develop a coding scheme on this basis. The coding scheme consists of two compression stages. The first stage is lossless linear prediction, which removes coherent components from a digitized waveform and produces a residue sequence that is assumed to have a white spectrum and a Gaussian amplitude distribution. The prediction is lossless in the sense that the original digitized waveform can be recovered by processing the residue sequence. The second stage, which is the subject of the present paper, is arithmetic coding used as just described. A formula for selecting ranges of waveform values is provided. Experiments with seismic and speech waveforms that produce near-optimal results are included A method for applying arithmetic coding to lossless waveform compression is discussed. Arithmetic coding has been used widely in lossless text compression and is known to produce compression ratios that are nearly optimal when the symbol table consists of an ordinary alphabet. In lossless compression of digitized waveform data, however, if each possible sample value is viewed as a "symbol" the symbol table would be typically very large and impractical. the authors therefore define a symbol to be a certain range of possible waveform values, rather than a single value, and develop a coding scheme on this basis. The coding scheme consists of two compression stages. The first stage is lossless linear prediction, which removes coherent components from a digitized waveform and produces a residue sequence that is assumed to have a white spectrum and a Gaussian amplitude distribution. The prediction is lossless in the sense that the original digitized waveform can be recovered by processing the residue sequence. The second stage, which is the subject of the present paper, is arithmetic coding used as just described. A formula for selecting ranges of waveform values is provided. Experiments with seismic and speech waveforms that produce near-optimal results are included.< > |
| Author | Stearns, S.D. |
| Author_xml | – sequence: 1 givenname: S.D. surname: Stearns fullname: Stearns, S.D. organization: Sandia Nat. Labs., Albuquerque, NM, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3659739$$DView record in Pascal Francis |
| BookMark | eNptkM1LAzEUxHOoYFs9ePW0BxE8bJuPzSY5luIXCF4UvIU0-1Yju0lNUsX_3pWtHsTTgze_GZiZoYkPHhA6IXhBCFZLIRcVZqyqJ2hKMGcll-LpEM1SesWYVJWqp4iuossvPWRnCxsa558L54supNRBSsWHeYc2xH7Q-m0cPi74I3TQmi7B8f7O0ePV5cP6pry7v75dr-5KSynJZU03QBvLN4QZZqkAShSzBCjUigksmdhIaUgjrRA140ApCMCUKaMaqCxnc3Q-5m5jeNtByrp3yULXGQ9hlzSVvKJiKDhHZ3vQJGu6NhpvXdLb6HoTPzWruRJMDdhyxGwc6kVotXXZ5KFRjsZ1mmD9PZsWUo-zDY6LP46fzP_Y05F1APDL7cUvgHJ3-g |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1049_el_19991088 crossref_primary_10_1155_2011_860549 crossref_primary_10_1002_eqe_551 crossref_primary_10_4028_www_scientific_net_AMR_230_232_1049 crossref_primary_10_1088_0964_1726_15_6_029 crossref_primary_10_1109_36_823899 crossref_primary_10_1109_LSP_2010_2046696 crossref_primary_10_1109_TITB_2007_899497 crossref_primary_10_1109_TSMCC_2002_806744 crossref_primary_10_1016_j_amc_2004_06_123 crossref_primary_10_1109_TGRS_2018_2789354 crossref_primary_10_1109_TC_2003_1244947 crossref_primary_10_1109_76_920188 crossref_primary_10_1109_ACCESS_2018_2836917 crossref_primary_10_1109_MSP_2017_2784458 crossref_primary_10_1109_TGRS_2002_805081 crossref_primary_10_1002_bltj_20539 crossref_primary_10_1016_j_ijepes_2012_04_028 crossref_primary_10_1016_j_dsp_2003_10_001 crossref_primary_10_1109_42_511758 crossref_primary_10_1006_dspr_1997_0285 crossref_primary_10_1109_TPWRS_2004_825899 crossref_primary_10_1007_s11803_005_0033_8 crossref_primary_10_1109_ACCESS_2020_3001073 crossref_primary_10_1109_TSA_2002_800559 crossref_primary_10_1109_JIOT_2022_3204672 crossref_primary_10_1109_36_481892 crossref_primary_10_1155_2007_35641 |
| Cites_doi | 10.1109/ACSSC.1993.342360 10.1109/DCC.1992.227464 10.1109/26.76478 10.1147/rd.292.0188 10.1109/ACSSC.1992.269103 10.1145/214762.214771 10.1109/36.225531 |
| ContentType | Journal Article |
| Copyright | 1995 INIST-CNRS |
| Copyright_xml | – notice: 1995 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 7SM 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/78.403346 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Earthquake Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Earthquake Engineering Abstracts Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Earthquake Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EndPage | 1879 |
| ExternalDocumentID | 3659739 10_1109_78_403346 403346 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SM 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c221t-62be2dc5b13a3c27e2193c1e2e69370837b88a1d8c77635e22e7e0239a9de4c53 |
| IEDL.DBID | RIE |
| ISSN | 1053-587X |
| IngestDate | Thu Oct 02 10:24:18 EDT 2025 Mon Jul 21 09:15:37 EDT 2025 Sat Nov 29 02:30:55 EST 2025 Tue Nov 18 22:04:26 EST 2025 Tue Aug 26 16:36:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Signal compression Coding Prediction Seismic signal Arithmetic code Signal processing Optimization |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c221t-62be2dc5b13a3c27e2193c1e2e69370837b88a1d8c77635e22e7e0239a9de4c53 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 28542703 |
| PQPubID | 23500 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_403346 crossref_primary_10_1109_78_403346 crossref_citationtrail_10_1109_78_403346 proquest_miscellaneous_28542703 pascalfrancis_primary_3659739 |
| PublicationCentury | 1900 |
| PublicationDate | 19950801 |
| PublicationDateYYYYMMDD | 1995-08-01 |
| PublicationDate_xml | – month: 08 year: 1995 text: 19950801 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 1995 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref8 ref7 ref4 ref3 ref6 ref10 tan (ref5) 1992 ref1 howard (ref2) 1992; 4 woodward (ref9) 1964 |
| References_xml | – ident: ref10 doi: 10.1109/ACSSC.1993.342360 – ident: ref6 doi: 10.1109/DCC.1992.227464 – ident: ref8 doi: 10.1109/26.76478 – start-page: 25 year: 1964 ident: ref9 publication-title: Probability and Information Theory – ident: ref7 doi: 10.1147/rd.292.0188 – volume: 4 year: 1992 ident: ref2 publication-title: Image and Text Compression – year: 1992 ident: ref5 publication-title: Theory and techniques for lossless waveform data compression – ident: ref4 doi: 10.1109/ACSSC.1992.269103 – ident: ref1 doi: 10.1145/214762.214771 – ident: ref3 doi: 10.1109/36.225531 |
| SSID | ssj0014496 |
| Score | 1.6634009 |
| Snippet | A method for applying arithmetic coding to lossless waveform compression is discussed. Arithmetic coding has been used widely in lossless text compression and... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1874 |
| SubjectTerms | Applied sciences Arithmetic Binary sequences Coding, codes Data compression Decorrelation Encoding Exact sciences and technology Gaussian distribution Information, signal and communications theory Signal and communications theory Speech Telecommunications and information theory Telemetry |
| Title | Arithmetic coding in lossless waveform compression |
| URI | https://ieeexplore.ieee.org/document/403346 https://www.proquest.com/docview/28542703 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 1053-587X databaseCode: RIE dateStart: 19910101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014496 providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN7YxoMefFSNVavEePBCC7sLu3tsjI2nxoMmvZFlGGKTCqYv_767CyU29uKNwEAmMzAP5vER8hBpCEKJsc9BSZ-nSH2tNfPDVAURBjoWKTiwCTEey8lEvdZ7tt0sDCK65jPs20NXy89KWNlfZQMeMMbjFmkJIapRraZgwLmD4jLRAvMjKSb1EqEwUAMh-9WNW67HYanYTki9MMLIKxSLPwbZeZnR8b_4OyFHdTDpDSvtn5I9LDrk8NeKwTNChyb7__i0o4oelNZRedPCmxn-ZsbGed96jTZs9WxredUSW5yT99Hz29OLX-Mk-EBpuPRjakScQZSGTDOgAo0VYhAixdgEHybGEqmUOswkCLt-DilFgXaoVasMOUTsgrSLssBL4mUMhIoznaoceBrmCqjiyDLIcsYiprrkcSPCBOol4hbLYpa4ZCJQiZBJJYYuuW9Iv6rNGbuIOlaMDcHmbG9LLc1lFpv8x3Jxt1FTYr4GW-LQBZarRWLnQakxYlc7n3tNDqqJdNu_d0Pay_kKe2Qf1svpYn7rXqgfQqTKoA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60CurBR1Wsrwbx4CU2-0h29yiiKGrxoNBb2EymWKiJ2Fb_vrubtFjsxVtIJmGYSeaReXyEnMcGIqowCQVoFYoMWWiM4SHNdBRjZBKZgQebkN2u6vX0c71n28_CIKJvPsNLd-hr-XkJE_errCMizkWyTFZiIRithrVmJQMhPBiXjRd4GCvZq9cI0Uh3pLqsbp1zPh5NxfVCmpEVR7_Csfhjkr2fud36F4fbZLMOJ4OrSv87ZAmLJtn4tWRwl7Arm_-_vbthxQBK56qCQREMLX9Da-WCb_OFLnANXHN51RRb7JHX25uX67uwRkoIgTE6DhNmhZxDnFFuODCJ1g5xoMgwseGHjbJkppShuQLpFtAhYyjRjbUanaOAmO-TRlEWeECCnIPUSW4y3QeR0b4GpgXyHPI-5zHXLXIxFWEK9Rpxh2YxTH06EelUqrQSQ4uczUg_qt0Zi4iaTowzgunZkzm1zC7zxGZAjov2VE2p_R5ckcMUWE5GqZsIZdaMHS58bpus3b08PaaP992HI7Jezae7br5j0hh_TvCErMLXeDD6PPUv1w_znc3n |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arithmetic+coding+in+lossless+waveform+compression&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Stearns%2C+S.D.&rft.date=1995-08-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=43&rft.issue=8&rft.spage=1874&rft.epage=1879&rft_id=info:doi/10.1109%2F78.403346&rft.externalDocID=403346 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |