Arithmetic coding in lossless waveform compression

A method for applying arithmetic coding to lossless waveform compression is discussed. Arithmetic coding has been used widely in lossless text compression and is known to produce compression ratios that are nearly optimal when the symbol table consists of an ordinary alphabet. In lossless compressio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 43; no. 8; pp. 1874 - 1879
Main Author: Stearns, S.D.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.08.1995
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:1053-587X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A method for applying arithmetic coding to lossless waveform compression is discussed. Arithmetic coding has been used widely in lossless text compression and is known to produce compression ratios that are nearly optimal when the symbol table consists of an ordinary alphabet. In lossless compression of digitized waveform data, however, if each possible sample value is viewed as a "symbol" the symbol table would be typically very large and impractical. the authors therefore define a symbol to be a certain range of possible waveform values, rather than a single value, and develop a coding scheme on this basis. The coding scheme consists of two compression stages. The first stage is lossless linear prediction, which removes coherent components from a digitized waveform and produces a residue sequence that is assumed to have a white spectrum and a Gaussian amplitude distribution. The prediction is lossless in the sense that the original digitized waveform can be recovered by processing the residue sequence. The second stage, which is the subject of the present paper, is arithmetic coding used as just described. A formula for selecting ranges of waveform values is provided. Experiments with seismic and speech waveforms that produce near-optimal results are included.< >
AbstractList A method for applying arithmetic coding to lossless waveform compression is discussed. Arithmetic coding has been used widely in lossless text compression and is known to produce compression ratios that are nearly optimal when the symbol table consists of an ordinary alphabet. In lossless compression of digitized waveform data, however, if each possible sample value is viewed as a "symbol" the symbol table would be typically very large and impractical. the authors therefore define a symbol to be a certain range of possible waveform values, rather than a single value, and develop a coding scheme on this basis. The coding scheme consists of two compression stages. The first stage is lossless linear prediction, which removes coherent components from a digitized waveform and produces a residue sequence that is assumed to have a white spectrum and a Gaussian amplitude distribution. The prediction is lossless in the sense that the original digitized waveform can be recovered by processing the residue sequence. The second stage, which is the subject of the present paper, is arithmetic coding used as just described. A formula for selecting ranges of waveform values is provided. Experiments with seismic and speech waveforms that produce near-optimal results are included
A method for applying arithmetic coding to lossless waveform compression is discussed. Arithmetic coding has been used widely in lossless text compression and is known to produce compression ratios that are nearly optimal when the symbol table consists of an ordinary alphabet. In lossless compression of digitized waveform data, however, if each possible sample value is viewed as a "symbol" the symbol table would be typically very large and impractical. the authors therefore define a symbol to be a certain range of possible waveform values, rather than a single value, and develop a coding scheme on this basis. The coding scheme consists of two compression stages. The first stage is lossless linear prediction, which removes coherent components from a digitized waveform and produces a residue sequence that is assumed to have a white spectrum and a Gaussian amplitude distribution. The prediction is lossless in the sense that the original digitized waveform can be recovered by processing the residue sequence. The second stage, which is the subject of the present paper, is arithmetic coding used as just described. A formula for selecting ranges of waveform values is provided. Experiments with seismic and speech waveforms that produce near-optimal results are included.< >
Author Stearns, S.D.
Author_xml – sequence: 1
  givenname: S.D.
  surname: Stearns
  fullname: Stearns, S.D.
  organization: Sandia Nat. Labs., Albuquerque, NM, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3659739$$DView record in Pascal Francis
BookMark eNptkM1LAzEUxHOoYFs9ePW0BxE8bJuPzSY5luIXCF4UvIU0-1Yju0lNUsX_3pWtHsTTgze_GZiZoYkPHhA6IXhBCFZLIRcVZqyqJ2hKMGcll-LpEM1SesWYVJWqp4iuossvPWRnCxsa558L54supNRBSsWHeYc2xH7Q-m0cPi74I3TQmi7B8f7O0ePV5cP6pry7v75dr-5KSynJZU03QBvLN4QZZqkAShSzBCjUigksmdhIaUgjrRA140ApCMCUKaMaqCxnc3Q-5m5jeNtByrp3yULXGQ9hlzSVvKJiKDhHZ3vQJGu6NhpvXdLb6HoTPzWruRJMDdhyxGwc6kVotXXZ5KFRjsZ1mmD9PZsWUo-zDY6LP46fzP_Y05F1APDL7cUvgHJ3-g
CODEN ITPRED
CitedBy_id crossref_primary_10_1049_el_19991088
crossref_primary_10_1155_2011_860549
crossref_primary_10_1002_eqe_551
crossref_primary_10_4028_www_scientific_net_AMR_230_232_1049
crossref_primary_10_1088_0964_1726_15_6_029
crossref_primary_10_1109_36_823899
crossref_primary_10_1109_LSP_2010_2046696
crossref_primary_10_1109_TITB_2007_899497
crossref_primary_10_1109_TSMCC_2002_806744
crossref_primary_10_1016_j_amc_2004_06_123
crossref_primary_10_1109_TGRS_2018_2789354
crossref_primary_10_1109_TC_2003_1244947
crossref_primary_10_1109_76_920188
crossref_primary_10_1109_ACCESS_2018_2836917
crossref_primary_10_1109_MSP_2017_2784458
crossref_primary_10_1109_TGRS_2002_805081
crossref_primary_10_1002_bltj_20539
crossref_primary_10_1016_j_ijepes_2012_04_028
crossref_primary_10_1016_j_dsp_2003_10_001
crossref_primary_10_1109_42_511758
crossref_primary_10_1006_dspr_1997_0285
crossref_primary_10_1109_TPWRS_2004_825899
crossref_primary_10_1007_s11803_005_0033_8
crossref_primary_10_1109_ACCESS_2020_3001073
crossref_primary_10_1109_TSA_2002_800559
crossref_primary_10_1109_JIOT_2022_3204672
crossref_primary_10_1109_36_481892
crossref_primary_10_1155_2007_35641
Cites_doi 10.1109/ACSSC.1993.342360
10.1109/DCC.1992.227464
10.1109/26.76478
10.1147/rd.292.0188
10.1109/ACSSC.1992.269103
10.1145/214762.214771
10.1109/36.225531
ContentType Journal Article
Copyright 1995 INIST-CNRS
Copyright_xml – notice: 1995 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SM
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/78.403346
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Earthquake Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Earthquake Engineering Abstracts
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Earthquake Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 1879
ExternalDocumentID 3659739
10_1109_78_403346
403346
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SM
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c221t-62be2dc5b13a3c27e2193c1e2e69370837b88a1d8c77635e22e7e0239a9de4c53
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Thu Oct 02 10:24:18 EDT 2025
Mon Jul 21 09:15:37 EDT 2025
Sat Nov 29 02:30:55 EST 2025
Tue Nov 18 22:04:26 EST 2025
Tue Aug 26 16:36:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Signal compression
Coding
Prediction
Seismic signal
Arithmetic code
Signal processing
Optimization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c221t-62be2dc5b13a3c27e2193c1e2e69370837b88a1d8c77635e22e7e0239a9de4c53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28542703
PQPubID 23500
PageCount 6
ParticipantIDs ieee_primary_403346
crossref_primary_10_1109_78_403346
crossref_citationtrail_10_1109_78_403346
proquest_miscellaneous_28542703
pascalfrancis_primary_3659739
PublicationCentury 1900
PublicationDate 19950801
PublicationDateYYYYMMDD 1995-08-01
PublicationDate_xml – month: 08
  year: 1995
  text: 19950801
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 1995
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref8
ref7
ref4
ref3
ref6
ref10
tan (ref5) 1992
ref1
howard (ref2) 1992; 4
woodward (ref9) 1964
References_xml – ident: ref10
  doi: 10.1109/ACSSC.1993.342360
– ident: ref6
  doi: 10.1109/DCC.1992.227464
– ident: ref8
  doi: 10.1109/26.76478
– start-page: 25
  year: 1964
  ident: ref9
  publication-title: Probability and Information Theory
– ident: ref7
  doi: 10.1147/rd.292.0188
– volume: 4
  year: 1992
  ident: ref2
  publication-title: Image and Text Compression
– year: 1992
  ident: ref5
  publication-title: Theory and techniques for lossless waveform data compression
– ident: ref4
  doi: 10.1109/ACSSC.1992.269103
– ident: ref1
  doi: 10.1145/214762.214771
– ident: ref3
  doi: 10.1109/36.225531
SSID ssj0014496
Score 1.6634009
Snippet A method for applying arithmetic coding to lossless waveform compression is discussed. Arithmetic coding has been used widely in lossless text compression and...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1874
SubjectTerms Applied sciences
Arithmetic
Binary sequences
Coding, codes
Data compression
Decorrelation
Encoding
Exact sciences and technology
Gaussian distribution
Information, signal and communications theory
Signal and communications theory
Speech
Telecommunications and information theory
Telemetry
Title Arithmetic coding in lossless waveform compression
URI https://ieeexplore.ieee.org/document/403346
https://www.proquest.com/docview/28542703
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014496
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN7YxoMefFSNVavEePBCC7sLu3tsjI2nxoMmvZFlGGKTCqYv_767CyU29uKNwEAmMzAP5vER8hBpCEKJsc9BSZ-nSH2tNfPDVAURBjoWKTiwCTEey8lEvdZ7tt0sDCK65jPs20NXy89KWNlfZQMeMMbjFmkJIapRraZgwLmD4jLRAvMjKSb1EqEwUAMh-9WNW67HYanYTki9MMLIKxSLPwbZeZnR8b_4OyFHdTDpDSvtn5I9LDrk8NeKwTNChyb7__i0o4oelNZRedPCmxn-ZsbGed96jTZs9WxredUSW5yT99Hz29OLX-Mk-EBpuPRjakScQZSGTDOgAo0VYhAixdgEHybGEqmUOswkCLt-DilFgXaoVasMOUTsgrSLssBL4mUMhIoznaoceBrmCqjiyDLIcsYiprrkcSPCBOol4hbLYpa4ZCJQiZBJJYYuuW9Iv6rNGbuIOlaMDcHmbG9LLc1lFpv8x3Jxt1FTYr4GW-LQBZarRWLnQakxYlc7n3tNDqqJdNu_d0Pay_kKe2Qf1svpYn7rXqgfQqTKoA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60CurBR1Wsrwbx4CU2-0h29yiiKGrxoNBb2EymWKiJ2Fb_vrubtFjsxVtIJmGYSeaReXyEnMcGIqowCQVoFYoMWWiM4SHNdBRjZBKZgQebkN2u6vX0c71n28_CIKJvPsNLd-hr-XkJE_errCMizkWyTFZiIRithrVmJQMhPBiXjRd4GCvZq9cI0Uh3pLqsbp1zPh5NxfVCmpEVR7_Csfhjkr2fud36F4fbZLMOJ4OrSv87ZAmLJtn4tWRwl7Arm_-_vbthxQBK56qCQREMLX9Da-WCb_OFLnANXHN51RRb7JHX25uX67uwRkoIgTE6DhNmhZxDnFFuODCJ1g5xoMgwseGHjbJkppShuQLpFtAhYyjRjbUanaOAmO-TRlEWeECCnIPUSW4y3QeR0b4GpgXyHPI-5zHXLXIxFWEK9Rpxh2YxTH06EelUqrQSQ4uczUg_qt0Zi4iaTowzgunZkzm1zC7zxGZAjov2VE2p_R5ckcMUWE5GqZsIZdaMHS58bpus3b08PaaP992HI7Jezae7br5j0hh_TvCErMLXeDD6PPUv1w_znc3n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arithmetic+coding+in+lossless+waveform+compression&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Stearns%2C+S.D.&rft.date=1995-08-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=43&rft.issue=8&rft.spage=1874&rft.epage=1879&rft_id=info:doi/10.1109%2F78.403346&rft.externalDocID=403346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon