Distributed Primal-Dual Splitting Algorithm for Multiblock Separable Optimization Problems

This article considers the distributed structured optimization problem of collaboratively minimizing the global objective function composed of the sum of local cost functions. Each local objective function involves a Lipschitz-differentiable convex function, a nonsmooth convex function, and a linear...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automatic control Ročník 67; číslo 8; s. 4264 - 4271
Hlavní autori: Li, Huaqing, Wu, Xiangzhao, Wang, Zheng, Huang, Tingwen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9286, 1558-2523
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article considers the distributed structured optimization problem of collaboratively minimizing the global objective function composed of the sum of local cost functions. Each local objective function involves a Lipschitz-differentiable convex function, a nonsmooth convex function, and a linear composite nonsmooth convex function. For such problems, we derive the synchronous distributed primal-dual splitting (S-DPDS) algorithm with uncoordinated stepsizes. Meanwhile, we develop the asynchronous version of the algorithm in light of the randomized block-coordinate method (A-DPDS). Further, the convergence results show the relaxed range and concise form of the acceptable parameters, which indicates that the algorithms are conducive to the selection of parameters in practical applications. Finally, we demonstrate the efficiency of S-DPDS and A-DPDS algorithms by numerical experiments.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2021.3116116