Distributed Resource Allocation for Human-Autonomy Teaming With Human Preference Uncertainty

This letter investigates distributed resource allocation involving multiple autonomous agents and multiple humans, focusing on two challenges: (i) the dependency between autonomous and human agents through interaction; (ii) accounting for human uncertainties where both parties must collectively sati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE control systems letters Ročník 9; s. 2327 - 2332
Hlavní autoři: Yao, Yichen, Mbagna Nanko, Ryan, Wang, Yue, Wang, Xuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2025
Témata:
ISSN:2475-1456, 2475-1456
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This letter investigates distributed resource allocation involving multiple autonomous agents and multiple humans, focusing on two challenges: (i) the dependency between autonomous and human agents through interaction; (ii) accounting for human uncertainties where both parties must collectively satisfy globally coupled probabilistic resource constraints. To address these, we first quantify the distribution of human choice behaviors using the maximum likelihood estimation (MLE), where human decisions evolve in response to nearby agent behaviors. Building on this human model, we introduce a novel reformulation that approximates the original probabilistic constraint via a polyhedral inner approximation, which then enables a fully distributed algorithm design over the system's communication graph while ensuring probabilistic constraint satisfaction. The proposed approach is validated through theoretical analysis and human-subject experiments.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2025.3604959