Convergence of batch gradient learning algorithm with smoothing L1/2 regularization for Sigma–Pi–Sigma neural networks
Sigma–Pi–Sigma neural networks are known to provide more powerful mapping capability than traditional feed-forward neural networks. The L1/2 regularizer is very useful and efficient, and can be taken as a representative of all the Lq(0<q<1) regularizers. However, the nonsmoothness of L1/2 regu...
Gespeichert in:
| Veröffentlicht in: | Neurocomputing (Amsterdam) Jg. 151; S. 333 - 341 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
03.03.2015
|
| Schlagworte: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!