Scaling Up Optuna: P2P Distributed Hyperparameters Optimization

ABSTRACT In machine learning (ML), hyperparameter optimization (HPO) is the process of choosing a tuple of values that ensures an efficient deployment and training of an AI model. In practice, HPO not only applies to ML tuning but can also be used to tune complex numerical simulations. In this conte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation Jg. 37; H. 4-5
1. Verfasser: Cudennec, Loïc
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 28.02.2025
Wiley Subscription Services, Inc
Wiley
Schriftenreihe:e70008
Schlagworte:
ISSN:1532-0626, 1532-0634
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract ABSTRACT In machine learning (ML), hyperparameter optimization (HPO) is the process of choosing a tuple of values that ensures an efficient deployment and training of an AI model. In practice, HPO not only applies to ML tuning but can also be used to tune complex numerical simulations. In this context, a numerical model of a given object is created to be used in realistic simulations. This model is defined by a set of values describing properties such as the geometry of the object or other unknown parameters related to physical quantities. While HPO for ML usually requires finding a few parameters, a numerical model can involve the tuning of more than a hundred parameters. As a consequence, a large number of tuples have to be explored and evaluated before finding a relevant solution, offering new challenges in high‐performance computing for efficiently driving the optimization. In this work we rely on the Optuna HPO framework, primarily designed for ML tasks and including state‐of‐the‐art sampling and pruning algorithms. We report on its use to optimize a complex numerical model onto a 1024‐core machine. We suggest 1.5M tuples and evaluate 5M simulations using different Optuna‐distributed layouts to build several tradeoffs between performance and energy consumption metrics. In order to further scale up the optimization process onto resources, we introduce OptunaP2P, an extension of Optuna based on the peer‐to‐peer paradigm. This allows to remove any bottleneck in the management of the shared knowledge between optimization processes. With OptunaP2P, we were able to compute up to 3 times faster compared to the regular Optuna‐distributed implementation and to obtain close‐to‐similar results in terms of quality in this reduced time‐frame.
AbstractList ABSTRACT In machine learning (ML), hyperparameter optimization (HPO) is the process of choosing a tuple of values that ensures an efficient deployment and training of an AI model. In practice, HPO not only applies to ML tuning but can also be used to tune complex numerical simulations. In this context, a numerical model of a given object is created to be used in realistic simulations. This model is defined by a set of values describing properties such as the geometry of the object or other unknown parameters related to physical quantities. While HPO for ML usually requires finding a few parameters, a numerical model can involve the tuning of more than a hundred parameters. As a consequence, a large number of tuples have to be explored and evaluated before finding a relevant solution, offering new challenges in high‐performance computing for efficiently driving the optimization. In this work we rely on the Optuna HPO framework, primarily designed for ML tasks and including state‐of‐the‐art sampling and pruning algorithms. We report on its use to optimize a complex numerical model onto a 1024‐core machine. We suggest 1.5M tuples and evaluate 5M simulations using different Optuna‐distributed layouts to build several tradeoffs between performance and energy consumption metrics. In order to further scale up the optimization process onto resources, we introduce OptunaP2P, an extension of Optuna based on the peer‐to‐peer paradigm. This allows to remove any bottleneck in the management of the shared knowledge between optimization processes. With OptunaP2P, we were able to compute up to 3 times faster compared to the regular Optuna‐distributed implementation and to obtain close‐to‐similar results in terms of quality in this reduced time‐frame.
In machine learning (ML), hyperparameter optimization (HPO) is the process of choosing a tuple of values that ensures an efficient deployment and training of an AI model. In practice, HPO not only applies to ML tuning but can also be used to tune complex numerical simulations. In this context, a numerical model of a given object is created to be used in realistic simulations. This model is defined by a set of values describing properties such as the geometry of the object or other unknown parameters related to physical quantities. While HPO for ML usually requires finding a few parameters, a numerical model can involve the tuning of more than a hundred parameters. As a consequence, a large number of tuples have to be explored and evaluated before finding a relevant solution, offering new challenges in high‐performance computing for efficiently driving the optimization. In this work we rely on the Optuna HPO framework, primarily designed for ML tasks and including state‐of‐the‐art sampling and pruning algorithms. We report on its use to optimize a complex numerical model onto a 1024‐core machine. We suggest 1.5M tuples and evaluate 5M simulations using different Optuna‐distributed layouts to build several tradeoffs between performance and energy consumption metrics. In order to further scale up the optimization process onto resources, we introduce OptunaP2P, an extension of Optuna based on the peer‐to‐peer paradigm. This allows to remove any bottleneck in the management of the shared knowledge between optimization processes. With OptunaP2P, we were able to compute up to 3 times faster compared to the regular Optuna‐distributed implementation and to obtain close‐to‐similar results in terms of quality in this reduced time‐frame.
Author Cudennec, Loïc
Author_xml – sequence: 1
  givenname: Loïc
  surname: Cudennec
  fullname: Cudennec, Loïc
  email: loic.cudennec@intradef.gouv.fr
  organization: Ministry of Armed Forces
BackLink https://hal.science/hal-05170088$$DView record in HAL
BookMark eNp1kE9PwkAQxTcGEwE9-A2aePJQ2D8tnXoxBFFMSCBRzpuh3eqS0q67rQY_vS01ePI0LzO_eZl5A9IrykIRcs3oiFHKx4lRo4hSCmekz0LBfToRQe-k-eSCDJzbUcoYFaxP7l8SzHXx5m2MtzJVXeCdt-Zr70G7yuptXanUWxyMsgYt7lWlrGs5vdffWOmyuCTnGeZOXf3WIdk8zl9nC3-5enqeTZd-wjkDHyaBiEXCBcZxAjGqIOMxICjWTMMIeZDF0VaASPGogYcBoIggzNIMUhBDctv5vmMujdV7tAdZopaL6VK2PRqy5m-AT9awNx1rbPlRK1fJXVnbojlPChYFTEQ05H-OiS2dsyo72TIq2yxlk6U8Ztmw44790rk6_A_K2XrebfwAdUF0Rg
Cites_doi 10.25080/Majora-8b375195-004
10.1109/TC.2018.2883597
10.1177/1094342017727061
10.1145/1925861.1925881
10.1145/2939672.2939785
10.1002/CPE.5573
10.1109/TPDS.2004.10
10.1016/J.JPDC.2023.02.004
10.1007/S11227‐023‐05506‐7
10.1016/J.BSPC.2021.103456
10.1016/J.JPDC.2005.06.014
10.1145/3292500.3330701
10.1016/J.JAG.2023.103446
10.1016/J.FUTURE.2023.10.002
10.1109/IPDPSW.2013.142
10.1109/PDP.2010.67
10.1002/cpe.5960
10.1109/JSAC.2003.818784
10.1109/IPDPSW55747.2022.00173
10.1145/3555776.3577847
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Attribution - NonCommercial
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1002/cpe.70008
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID oai:HAL:hal-05170088v1
10_1002_cpe_70008
CPE70008
Genre researchArticle
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
LH4
O8X
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c2218-864393c23a99c89ae4f298a8e121857a24f97b383daa24f982548a3785fdf8d83
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001436603800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sun Oct 19 06:20:22 EDT 2025
Wed Aug 13 07:48:53 EDT 2025
Sat Nov 29 07:51:29 EST 2025
Thu Mar 06 09:30:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4-5
Keywords Energy consumption
Operational Research
Peer-to-peer
High-Performance Computing
Optuna
Distributed Computing
Machine Learning
Hyperparameters Optimization
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2218-864393c23a99c89ae4f298a8e121857a24f97b383daa24f982548a3785fdf8d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6476-4574
OpenAccessLink https://hal.science/hal-05170088
PQID 3174137052
PQPubID 2045170
PageCount 22
ParticipantIDs hal_primary_oai_HAL_hal_05170088v1
proquest_journals_3174137052
crossref_primary_10_1002_cpe_70008
wiley_primary_10_1002_cpe_70008_CPE70008
PublicationCentury 2000
PublicationDate 28 February 2025
PublicationDateYYYYMMDD 2025-02-28
PublicationDate_xml – month: 02
  year: 2025
  text: 28 February 2025
  day: 28
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationSeriesTitle e70008
PublicationTitle Concurrency and computation
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2004; 22
2010
2022; 73
2024; 80
2023; 122
2020; 32
2023
2004; 34 2004
2001
2022
2013; 13
2021
2020
2006; 66
2019; 68
2004; 15
2023; 176
2024; 151
2019
2011; 41
2018
2016
2015
2013
2018; 32
Otaki R. (e_1_2_9_10_1) 2022
Foster I. T. (e_1_2_9_33_1)
Zuber A. (e_1_2_9_6_1) 2022
Moritz P. (e_1_2_9_3_1) 2018
Stoica I. (e_1_2_9_31_1) 2001
Kennedy P. (e_1_2_9_34_1) 2019
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
Meng X. (e_1_2_9_9_1) 2015
Rosendo D. (e_1_2_9_36_1) 2020
Heckmann O. (e_1_2_9_30_1) 2004
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
Trabelsi K. (e_1_2_9_16_1) 2019
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
Contributors (e_1_2_9_4_1) 2018
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_2_1
e_1_2_9_26_1
Rozencwajg H. (e_1_2_9_11_1) 2021
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
Kozuki M. (e_1_2_9_5_1) 2020
References_xml – volume: 41
  start-page: 120
  issue: 1
  year: 2011
  end-page: 124
  article-title: Topology‐Aware Resource Allocation for Data‐Intensive Workloads
  publication-title: Proceedings of the First ACM Asia‐Pacific Workshop on Workshop on Systems
– volume: 122
  year: 2023
  article-title: Quantifying Scattering Characteristics of Mangrove Species From Optuna‐Based Optimal Machine Learning Classification Using Multi‐Scale Feature Selection and SAR Image Time Series
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 32
  start-page: 14
  issue: 1
  year: 2018
  end-page: 27
  article-title: Topology‐Aware Job Mapping
  publication-title: International Journal of High Performance Computing Applications
– volume: 15
  start-page: 546
  issue: 6
  year: 2004
  end-page: 558
  article-title: Mapping and Load‐Balancing Iterative Computations
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– volume: 22
  start-page: 41
  issue: 1
  year: 2004
  end-page: 53
  article-title: Tapestry: A Resilient Global‐Scale Overlay for Service Deployment
  publication-title: IEEE Journal on Selected Areas in Communications
– volume: 32
  issue: 24
  year: 2020
  article-title: Adaptive Message Passing Polling for Energy Efficiency: Application to Software‐Distributed Shared Memory Over Heterogeneous Computing Resources
  publication-title: Concurrency and Computation: Practice and Experience
– start-page: 19
  year: 2013
  end-page: 30
– volume: 66
  start-page: 32
  issue: 1
  year: 2006
  end-page: 46
  article-title: Task Assignment in Heterogeneous Computing Systems
  publication-title: Journal of Parallel and Distributed Computing
– start-page: 1053
  year: 2022
  end-page: 1062
– year: 2021
– start-page: 176
  year: 2020
  end-page: 186
– start-page: 1209
  year: 2023
  end-page: 1216
– start-page: 149
  year: 2001
  end-page: 160
– volume: 73
  year: 2022
  article-title: Hyoptxg: OPTUNA Hyper‐Parameter Optimization Framework for Predicting Cardiovascular Disease Using XGBoost
  publication-title: Biomedical Signal Processing and Control
– volume: 34 2004
  start-page: 224
  year: 2004
  end-page: 228
– volume: 176
  start-page: 1
  year: 2023
  end-page: 16
  article-title: Energy‐Aware Mapping and Scheduling Strategies for Real‐Time Workflows Under Reliability Constraints
  publication-title: Journal of Parallel and Distributed Computing
– start-page: 561
  year: 2018
  end-page: 577
– year: 2018
– volume: 32
  issue: 15
  year: 2020
  article-title: Efficient Algorithm for Scheduling Parallel Applications on Hybrid Multicore Machines With Communications Delays and Energy Constraint
  publication-title: Concurrency and Computation: Practice and Experience
– start-page: 785
  year: 2016
  end-page: 794
– start-page: 118
  end-page: 128
– year: 2015
  article-title: MLlib: Machine Learning in Apache Spark
  publication-title: Journal of Machine Learning Research
– year: 2022
– year: 2020
– start-page: 258
  year: 2019
  end-page: 269
– volume: 151
  start-page: 214
  year: 2024
  end-page: 231
  article-title: Energy Efficient Task Scheduling Based on Deep Reinforcement Learning in Cloud Environment: A Specialized Review
  publication-title: Future Generation Computer Systems
– start-page: 180
  year: 2010
  end-page: 186
– volume: 13
  start-page: 20
  year: 2013
  article-title: Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms
  publication-title: SciPy
– year: 2019
– start-page: 2623
  year: 2019
  end-page: 2631
– volume: 68
  start-page: 713
  issue: 5
  year: 2019
  end-page: 728
  article-title: mARGOt: A Dynamic Autotuning Framework for Self‐Aware Approximate Computing
  publication-title: IEEE Transactions on Computers
– volume: 80
  start-page: 549
  issue: 1
  year: 2024
  end-page: 569
  article-title: Carbon Emission‐Aware Job Scheduling for Kubernetes Deployments
  publication-title: Journal of Supercomputing
– ident: e_1_2_9_7_1
  doi: 10.25080/Majora-8b375195-004
– ident: e_1_2_9_15_1
  doi: 10.1109/TC.2018.2883597
– ident: e_1_2_9_13_1
  doi: 10.1177/1094342017727061
– volume-title: Hyperparameter Optimization Run Time and Cost Using AWS and Optuna
  year: 2021
  ident: e_1_2_9_11_1
– ident: e_1_2_9_14_1
  doi: 10.1145/1925861.1925881
– ident: e_1_2_9_28_1
  doi: 10.1145/2939672.2939785
– ident: e_1_2_9_21_1
  doi: 10.1002/CPE.5573
– start-page: 118
  volume-title: Peer‐To‐Peer Systems II, Second International Workshop, IPTPS 2003
  ident: e_1_2_9_33_1
– start-page: 149
  volume-title: Proceedings of the ACM SIGCOMM 2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication
  year: 2001
  ident: e_1_2_9_31_1
– ident: e_1_2_9_19_1
  doi: 10.1109/TPDS.2004.10
– ident: e_1_2_9_20_1
  doi: 10.1016/J.JPDC.2023.02.004
– ident: e_1_2_9_23_1
  doi: 10.1007/S11227‐023‐05506‐7
– ident: e_1_2_9_27_1
  doi: 10.1016/J.BSPC.2021.103456
– ident: e_1_2_9_18_1
  doi: 10.1016/J.JPDC.2005.06.014
– ident: e_1_2_9_2_1
  doi: 10.1145/3292500.3330701
– volume-title: AMD EPYC 7742 Benchmarks and Review Simply Peerless
  year: 2019
  ident: e_1_2_9_34_1
– start-page: 258
  volume-title: Parallel Processing Workshops–Euro‐Par 2019 International Workshops 11997 of Lecture Notes in Computer Science
  year: 2019
  ident: e_1_2_9_16_1
– start-page: 224
  volume-title: Jahrestagung der Gesellschaft für Informatik, Informatik verbindet, INFORMATIK 2004
  year: 2004
  ident: e_1_2_9_30_1
– ident: e_1_2_9_29_1
  doi: 10.1016/J.JAG.2023.103446
– volume-title: Parallel Hyperparameter Tuning With Optuna and Kubeflow Pipelines
  year: 2020
  ident: e_1_2_9_5_1
– volume-title: Distributed Optimization via NFS Using Optuna's New Operation‐Based Logging Storage
  year: 2022
  ident: e_1_2_9_10_1
– ident: e_1_2_9_24_1
  doi: 10.1016/J.FUTURE.2023.10.002
– volume-title: Optuna–Easy Parallelization
  year: 2018
  ident: e_1_2_9_4_1
– ident: e_1_2_9_17_1
  doi: 10.1109/IPDPSW.2013.142
– start-page: 176
  volume-title: E2Clab: Exploring the Computing Continuum Through Repeatable, Replicable and Reproducible Edge‐To‐Cloud Experiments
  year: 2020
  ident: e_1_2_9_36_1
– year: 2015
  ident: e_1_2_9_9_1
  article-title: MLlib: Machine Learning in Apache Spark
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_12_1
  doi: 10.1109/PDP.2010.67
– ident: e_1_2_9_35_1
  doi: 10.1002/cpe.5960
– ident: e_1_2_9_32_1
  doi: 10.1109/JSAC.2003.818784
– ident: e_1_2_9_8_1
– volume-title: Running Distributed Hyperparameter Optimization With Optuna‐Distributed
  year: 2022
  ident: e_1_2_9_6_1
– start-page: 561
  volume-title: 13th USENIX Symposium on Operating Systems Design and Implementation
  year: 2018
  ident: e_1_2_9_3_1
– ident: e_1_2_9_26_1
– ident: e_1_2_9_22_1
  doi: 10.1109/IPDPSW55747.2022.00173
– ident: e_1_2_9_25_1
  doi: 10.1145/3555776.3577847
SSID ssj0011031
Score 2.3886168
Snippet ABSTRACT In machine learning (ML), hyperparameter optimization (HPO) is the process of choosing a tuple of values that ensures an efficient deployment and...
In machine learning (ML), hyperparameter optimization (HPO) is the process of choosing a tuple of values that ensures an efficient deployment and training of...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Computer Science
Computer simulation
distributed computing
Energy consumption
high‐performance computing
hyperparameters optimization
Machine learning
Numerical models
operational research
Optimization
optuna
Parameters
peer‐to‐peer
Scaling up
Simulation
Tuning
Title Scaling Up Optuna: P2P Distributed Hyperparameters Optimization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.70008
https://www.proquest.com/docview/3174137052
https://hal.science/hal-05170088
Volume 37
WOSCitedRecordID wos001436603800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8QPHgRPyOKpjEevExGO2irJ8JHOBBcjCTcmrJ1kQNzYcDfb1_3IR5MTLw121u2vPbt_d7W9_sh9KDDhSBdSh2T7QLHU4Q5iobEMVCBi6BLFkxZyvwJm075fC78CnopemEyfojygxtEhn1fQ4CrRdr6Jg0NEv3EXNvoWyNm3XpVVBu8jWaT8icCKBhkdKnEcQ1wL4iFXNIqL_6Rjg4-YDPkHtLcx6s24Yzq_3rUE3Sc40zcyxbGKaro-AzVCw0HnIf0uQHrZpJM-sKzBL8mm22snrFPfDwAQl3QwtIhHptadQ0c4SvYO5OC3XKV929eoNlo-N4fO7moghMQk84dDhCEBoQqIQIulPYiIrjiuk2AFkoRLxJsYerWUNkxVJBcUcY7URjxkNNLVI0_Y32FcBh5HcYirTkwxgjFoZhxQVe8LXRAVQPdF76VScadITOWZCKNS6R1iTEyXi_PA9v1uDeRcAzow4wF37UbqFlMisxjLJUG-ZgMzNwOaaBH6_7f7yL7_tAOrv9ueoOOCIj92v71Jqpu1lt9iw6D3WaZru_yxfYFxDzTaA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gmOhFfEYUtTEevFTKtrC7xgvhEYwViYGE22Zpt5EDlfD6_e5sW8SDiYm3TTtNm9mZzje7O98A3KlwzEnddW0d7QLbk4Ta0g2JraEC40GdjKk0lPk-7fXYaMT7OXjKamESfojNght6hvlfo4PjgnTlmzU0mKkH6phK34KnzaiWh0LrvTP0N7sI2MIg4UsltqORe8Ys5JDK5uEf8WjnA09DbkHNbcBqIk6n-L9vPYSDFGlajcQ0jiCn4mMoZl0crNSpTzRc19OkA5g1nFlvs-Uqlo9Wn_StFlLqYjcsFVpdna3OkSV8iqdnFig3maYVnKcw7LQHza6dtlWwA6IDus0QhLgBcSXnAeNSeRHhTDJVJUgMJYkXcTrWmWsozRhzSCZdympRGLGQuWeQjz9jdQ5WGHk1SiOlGHLGcMkwnXGws3iVq8CVJbjNlCtmCXuGSHiSidAqEUYlWkirfXMf-a67DV_gNSQQ0xJsXS1BOZsVkXrZQmjso2MwdWqkBPdG_7-_RTT7bTO4-LvoDex1B6--8J97L5ewT7D1r6lmL0N-OV-pK9gN1svJYn6dWt4Xf9jXWA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5qK-LF-sRq1SAevMSmm6S7K15K21Ax1CAWelu2yQZ7aAx9_X53Ng_rQRC8LcmEhNmdfN8kO98gdCejKcMd2zYV2oWmIzAxhR1hU1EFysIOnhKhJfN9MhrRyYQFFfRU1MJk-hDlBzeIDP2-hgCXaRS3vlVDw1Q-EEtX-tYcl3VUWNb6b97YL_8iQAuDTC8Vm5Zi7oWykIVb5cU_8GjnA3ZDblHNbcKqEcer_-9ZD9FBzjSNbrY0jlBFJseoXnRxMPKgPlF0XU2TAjBjnBqv6WqdiEcjwIHRB0ld6IYlI2OostUFqITPYffMEuxm87yC8xSNvcF7b2jmbRXMECtANymQEDvEtmAspExIJ8aMCirbGIShBHZiRqYqc42EHkMOSYVNqBtHMY2ofYaqyWciz5ERxY5LSCwlBc0YJiikMxZ0Fm8zGdqigW4L5_I0U8_gmU4y5solXLtEGSm3l-dB73rY9TkcAwExZUE37QZqFrPC8yhbcsV9FAYTy8UNdK_9__tdeC8Y6MHF301v0F7Q97j_PHq5RPsYOv_qYvYmqq4Wa3mFdsPNarZcXOcL7wtFQNbT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling+Up+Optuna%3A+P2P+Distributed+Hyperparameters+Optimization&rft.jtitle=Concurrency+and+computation&rft.au=Cudennec%2C+Lo%C3%AFc&rft.date=2025-02-28&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=37&rft.issue=4-5&rft_id=info:doi/10.1002%2Fcpe.70008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon