Quantum message-passing algorithm for optimal and efficient decoding

Recently, Renes proposed a quantum algorithm called belief propagation with quantum messages (BPQM) for decoding classical data encoded using a binary linear code with tree Tanner graph that is transmitted over a pure-state CQ channel \cite{renes_2017}, i.e., a channel with classical input and pure-...

Full description

Saved in:
Bibliographic Details
Published in:Quantum (Vienna, Austria) Vol. 6; p. 784
Main Authors: Piveteau, Christophe, Renes, Joseph M.
Format: Journal Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 23.08.2022
ISSN:2521-327X, 2521-327X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, Renes proposed a quantum algorithm called belief propagation with quantum messages (BPQM) for decoding classical data encoded using a binary linear code with tree Tanner graph that is transmitted over a pure-state CQ channel \cite{renes_2017}, i.e., a channel with classical input and pure-state quantum output. The algorithm presents a genuine quantum counterpart to decoding based on the classical belief propagation algorithm, which has found wide success in classical coding theory when used in conjunction with LDPC or Turbo codes. More recently Rengaswamy e t a l . \cite{rengaswamy_2020} observed that BPQM implements the optimal decoder on a small example code, in that it implements the optimal measurement that distinguishes the quantum output states for the set of input codewords with highest achievable probability. Here we significantly expand the understanding, formalism, and applicability of the BPQM algorithm with the following contributions. First, we prove analytically that BPQM realizes optimal decoding for any binary linear code with tree Tanner graph. We also provide the first formal description of the BPQM algorithm in full detail and without any ambiguity. In so doing, we identify a key flaw overlooked in the original algorithm and subsequent works which implies quantum circuit realizations will be exponentially large in the code dimension. Although BPQM passes quantum messages, other information required by the algorithm is processed globally. We remedy this problem by formulating a truly message-passing algorithm which approximates BPQM and has quantum circuit complexity O ( poly  n , polylog  1 ϵ ) , where n is the code length and ϵ is the approximation error. Finally, we also propose a novel method for extending BPQM to factor graphs containing cycles by making use of approximate cloning. We show some promising numerical results that indicate that BPQM on factor graphs with cycles can significantly outperform the best possible classical decoder.
AbstractList Recently, Renes proposed a quantum algorithm called belief propagation with quantum messages (BPQM) for decoding classical data encoded using a binary linear code with tree Tanner graph that is transmitted over a pure-state CQ channel \cite{renes_2017}, i.e., a channel with classical input and pure-state quantum output. The algorithm presents a genuine quantum counterpart to decoding based on the classical belief propagation algorithm, which has found wide success in classical coding theory when used in conjunction with LDPC or Turbo codes. More recently Rengaswamy e t a l . \cite{rengaswamy_2020} observed that BPQM implements the optimal decoder on a small example code, in that it implements the optimal measurement that distinguishes the quantum output states for the set of input codewords with highest achievable probability. Here we significantly expand the understanding, formalism, and applicability of the BPQM algorithm with the following contributions. First, we prove analytically that BPQM realizes optimal decoding for any binary linear code with tree Tanner graph. We also provide the first formal description of the BPQM algorithm in full detail and without any ambiguity. In so doing, we identify a key flaw overlooked in the original algorithm and subsequent works which implies quantum circuit realizations will be exponentially large in the code dimension. Although BPQM passes quantum messages, other information required by the algorithm is processed globally. We remedy this problem by formulating a truly message-passing algorithm which approximates BPQM and has quantum circuit complexity O ( poly  n , polylog  1 ϵ ) , where n is the code length and ϵ is the approximation error. Finally, we also propose a novel method for extending BPQM to factor graphs containing cycles by making use of approximate cloning. We show some promising numerical results that indicate that BPQM on factor graphs with cycles can significantly outperform the best possible classical decoder.
Recently, Renes proposed a quantum algorithm called belief propagation with quantum messages (BPQM) for decoding classical data encoded using a binary linear code with tree Tanner graph that is transmitted over a pure-state CQ channel \cite{renes_2017}, i.e., a channel with classical input and pure-state quantum output. The algorithm presents a genuine quantum counterpart to decoding based on the classical belief propagation algorithm, which has found wide success in classical coding theory when used in conjunction with LDPC or Turbo codes. More recently Rengaswamy {et al.} \cite{rengaswamy_2020} observed that BPQM implements the optimal decoder on a small example code, in that it implements the optimal measurement that distinguishes the quantum output states for the set of input codewords with highest achievable probability. Here we significantly expand the understanding, formalism, and applicability of the BPQM algorithm with the following contributions. First, we prove analytically that BPQM realizes optimal decoding for any binary linear code with tree Tanner graph. We also provide the first formal description of the BPQM algorithm in full detail and without any ambiguity. In so doing, we identify a key flaw overlooked in the original algorithm and subsequent works which implies quantum circuit realizations will be exponentially large in the code dimension. Although BPQM passes quantum messages, other information required by the algorithm is processed globally. We remedy this problem by formulating a truly message-passing algorithm which approximates BPQM and has quantum circuit complexity $\mathcal{O}(polyn, polylog\frac{1}{\epsilon})$, where $n$ is the code length and $\epsilon$ is the approximation error. Finally, we also propose a novel method for extending BPQM to factor graphs containing cycles by making use of approximate cloning. We show some promising numerical results that indicate that BPQM on factor graphs with cycles can significantly outperform the best possible classical decoder.
ArticleNumber 784
Author Renes, Joseph M.
Piveteau, Christophe
Author_xml – sequence: 1
  givenname: Christophe
  surname: Piveteau
  fullname: Piveteau, Christophe
  organization: Institute for Theoretical Physics, ETH Zürich, Switzerland
– sequence: 2
  givenname: Joseph M.
  surname: Renes
  fullname: Renes, Joseph M.
  organization: Institute for Theoretical Physics, ETH Zürich, Switzerland
BookMark eNpNkNtKAzEQhoNUsNY-gHf7AtGck15KPRUKIih4F7LJZN2y3bTJ9sK3d21FvJqfYebj57tEkz71gNA1JTeMcU5v95gRxjAxmHGsjThDUyYZxZzpj8m_fIHmpWwIIcxopYyYovvXg-uHw7baQimuAbxzpbR9U7muSbkdPrdVTLlKu6Hduq5yfaggxta30A9VAJ_CeHyFzqPrCsx_5wy9Pz68LZ_x-uVptbxbY88YFVgQXkdg2mkVgg888uij9IoI6aUELbWAWpCgoJZRO2U8B0WVrjmjIEHyGVqduCG5jd3lsVL-ssm19rhIubEuD63vwDottB5fBaULETmvfRBgqBTc6LgIdGTRE8vnVEqG-MejxB6t2r39sWqJsYzb0Sr_Bm3ubDQ
Cites_doi 10.1016/S0076-5392(08)60247-7
10.1103/PhysRevA.71.052330
10.1016/B978-0-12-697560-4.50014-9
10.26421/QIC16.3-4-2
10.1103/PhysRevA.100.012330
10.1080/09500349414552221
10.1109/ISIT.2019.8849833
10.1109/ITW.2017.8277985
10.1007/s11128-020-02855-7
10.1103/PhysRevLett.122.200501
10.1109/ISIT.2012.6284250
10.1017/CBO9780511791338
10.1103/PhysRevLett.106.240502
10.1109/18.782170
10.1038/s41534-021-00422-1
10.1109/TIT.2012.2218792
10.1109/18.910572
10.1103/PhysRevB.76.201102
10.1016/j.aop.2007.10.001
10.1103/PhysRevA.57.2368
10.1017/9781316848142
10.1109/MSP.2004.1267047
10.1103/PhysRevA.58.146
10.1098/rspa.1935.0122
10.1147/rd.176.0525
10.1109/TIT.2017.2716422
10.1109/TIT.2014.2314463
10.1109/18.915636
10.22331/q-2021-11-22-585
10.1103/PhysRevResearch.2.043423
10.1103/PhysRevA.74.052333
10.1109/TIT.2005.850085
10.4007/annals.2021.193.2.4
10.1088/1367-2630/15/1/013021
10.22331/q-2018-10-19-102
10.1098/rspa.1936.0047
10.1145/3372224.3419207
10.1007/BF02435921
10.1109/TIT.2009.2021379
10.1088/1367-2630/aa7c78
10.48550/arXiv.2103.09225
10.1109/TIT.2011.2169534
10.26421/QIC8.10-8
10.1103/PhysRevLett.106.080403
10.1088/1751-8121/aa6dc3
10.1080/17442507508833114
10.1109/18.910573
10.48550/arXiv.1805.12445
10.1109/TIT.2013.2280915
10.48550/arXiv.2010.10845
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.22331/q-2022-08-23-784
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2521-327X
ExternalDocumentID oai_doaj_org_article_a747767b41194f33bcd4e8154387f9d1
10_22331_q_2022_08_23_784
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c2214-403bfe27a76ddcd3f3fcf5c6045c55e7574eb40d6eb5f7a68c3e6167b321e5e53
IEDL.DBID DOA
ISSN 2521-327X
IngestDate Fri Oct 03 12:51:02 EDT 2025
Sat Nov 29 03:16:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2214-403bfe27a76ddcd3f3fcf5c6045c55e7574eb40d6eb5f7a68c3e6167b321e5e53
OpenAccessLink https://doaj.org/article/a747767b41194f33bcd4e8154387f9d1
ParticipantIDs doaj_primary_oai_doaj_org_article_a747767b41194f33bcd4e8154387f9d1
crossref_primary_10_22331_q_2022_08_23_784
PublicationCentury 2000
PublicationDate 2022-08-23
PublicationDateYYYYMMDD 2022-08-23
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-23
  day: 23
PublicationDecade 2020
PublicationTitle Quantum (Vienna, Austria)
PublicationYear 2022
Publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Publisher_xml – name: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
References 44
45
46
47
48
49
50
51
52
10
11
12
13
14
15
16
17
18
19
0
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 35
  doi: 10.1016/S0076-5392(08)60247-7
– ident: 39
  doi: 10.1103/PhysRevA.71.052330
– ident: 41
  doi: 10.1016/B978-0-12-697560-4.50014-9
– ident: 44
  doi: 10.26421/QIC16.3-4-2
– ident: 18
  doi: 10.1103/PhysRevA.100.012330
– ident: 7
  doi: 10.1080/09500349414552221
– ident: 20
  doi: 10.1109/ISIT.2019.8849833
– ident: 4
  doi: 10.1109/ITW.2017.8277985
– ident: 46
  doi: 10.1007/s11128-020-02855-7
– ident: 17
  doi: 10.1103/PhysRevLett.122.200501
– ident: 52
  doi: 10.1109/ISIT.2012.6284250
– ident: 12
  doi: 10.1017/CBO9780511791338
– ident: 36
  doi: 10.1103/PhysRevLett.106.240502
– ident: 37
  doi: 10.1109/18.782170
– ident: 1
  doi: 10.1038/s41534-021-00422-1
– ident: 50
  doi: 10.1109/TIT.2012.2218792
– ident: 33
  doi: 10.1109/18.910572
– ident: 30
  doi: 10.1103/PhysRevB.76.201102
– ident: 24
  doi: 10.1016/j.aop.2007.10.001
– ident: 48
  doi: 10.1103/PhysRevA.57.2368
– ident: 47
  doi: 10.1017/9781316848142
– ident: 5
  doi: 10.1109/MSP.2004.1267047
– ident: 10
  doi: 10.1103/PhysRevA.58.146
– ident: 25
  doi: 10.1098/rspa.1935.0122
– ident: 40
  doi: 10.1147/rd.176.0525
– ident: 3
  doi: 10.1109/TIT.2017.2716422
– ident: 51
  doi: 10.1109/TIT.2014.2314463
– ident: 11
  doi: 10.1109/18.915636
– ident: 19
  doi: 10.22331/q-2021-11-22-585
– ident: 21
  doi: 10.1103/PhysRevResearch.2.043423
– ident: 13
  doi: 10.1103/PhysRevA.74.052333
– ident: 27
– ident: 29
  doi: 10.1109/TIT.2005.850085
– ident: 42
  doi: 10.4007/annals.2021.193.2.4
– ident: 43
  doi: 10.1088/1367-2630/15/1/013021
– ident: 16
  doi: 10.22331/q-2018-10-19-102
– ident: 26
  doi: 10.1098/rspa.1936.0047
– ident: 23
  doi: 10.1145/3372224.3419207
– ident: 28
– ident: 9
  doi: 10.1007/BF02435921
– ident: 49
  doi: 10.1109/TIT.2009.2021379
– ident: 0
  doi: 10.1088/1367-2630/aa7c78
– ident: 8
  doi: 10.48550/arXiv.2103.09225
– ident: 15
  doi: 10.1109/TIT.2011.2169534
– ident: 14
  doi: 10.26421/QIC8.10-8
– ident: 31
  doi: 10.1103/PhysRevLett.106.080403
– ident: 38
  doi: 10.1088/1751-8121/aa6dc3
– ident: 6
  doi: 10.1080/17442507508833114
– ident: 32
– ident: 34
  doi: 10.1109/18.910573
– ident: 45
  doi: 10.48550/arXiv.1805.12445
– ident: 2
  doi: 10.1109/TIT.2013.2280915
– ident: 22
  doi: 10.48550/arXiv.2010.10845
SSID ssj0002876684
Score 2.2138672
Snippet Recently, Renes proposed a quantum algorithm called belief propagation with quantum messages (BPQM) for decoding classical data encoded using a binary linear...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 784
Title Quantum message-passing algorithm for optimal and efficient decoding
URI https://doaj.org/article/a747767b41194f33bcd4e8154387f9d1
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2521-327X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002876684
  issn: 2521-327X
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2521-327X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002876684
  issn: 2521-327X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsNAEF0hREGDQIAIl7agQrJie_ZKyZGIhggkkNKtvFcA4VwklHw7s-sAoaKhcWHZlvfN2O-99XqGkDNlJaAqiKsbSsiYqQy-BzEgnociV4ajiLWp2YTs99Vg0LlbafUV14Q15YEb4NoV6l0ppGEF2u0AYKxjXiHxg5Kh45LxQdWzYqZe0pSRFEKx5jMmMiAU7SkmBBqvHBMDMqnYLyJaqdefiKW3TbaWipBeNHeyQ9b8aJdc3y9wyIua1rFFydBnExS5yDK0eh2O0c8_1RTVJh3jA1_jydXIUZ-KQSCHUIeWMlLSHnnsdR-ubrJlw4PMlmXB0MuBCb6UlRTOWQcBgg3cCpRdlnMvuWTesNwJb3iQlVAWvCgQHCgLzz2HfbI-Go_8AaGlgCBdHuKftowZJPogIvDSdYyDyrTI-dfo9aSpa6HRDySo9FRHqHSudAkaoWqRy4jP94GxJHXagYHSy0DpvwJ1-B8XOSKbP1E8Juvz2cKfkA37Pn9-m52mHMDt7Uf3E3eEtHU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+message-passing+algorithm+for+optimal+and+efficient+decoding&rft.jtitle=Quantum+%28Vienna%2C+Austria%29&rft.au=Piveteau%2C+Christophe&rft.au=Renes%2C+Joseph+M.&rft.date=2022-08-23&rft.issn=2521-327X&rft.eissn=2521-327X&rft.volume=6&rft.spage=784&rft_id=info:doi/10.22331%2Fq-2022-08-23-784&rft.externalDBID=n%2Fa&rft.externalDocID=10_22331_q_2022_08_23_784
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2521-327X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2521-327X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2521-327X&client=summon