Multi-Scale Reinforcement Learning of Dynamic Energy Controller for Connected Electrified Vehicles

The synergy of reinforcement learning (RL)-based energy management and vehicle-to-everything communication has been proved effective in boosting the fuel economy of connected plug-in hybrid electric vehicles (PHEVs). However, the intricate coupling of mechanical, electrical, thermal states and drivi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on intelligent transportation systems s. 1 - 13
Hlavní autori: Zhang, Hao, Lei, Nuo, Li, Shengbo Eben, Zhang, Junzhi, Wang, Zhi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:1524-9050, 1558-0016
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The synergy of reinforcement learning (RL)-based energy management and vehicle-to-everything communication has been proved effective in boosting the fuel economy of connected plug-in hybrid electric vehicles (PHEVs). However, the intricate coupling of mechanical, electrical, thermal states and driving cycle results in a high-dimensional complex energy control problem for PHEVs, which is challenging to optimally solve within the same time scale. To this end, this study designs a multi-horizon reinforcement learning (MHRL)-based energy management of PHEVs, aware of the traffic preview from intelligent transportation systems to optimize the energy flow and thermal states as well as the transient dynamics of the powertrain. The proposed strategy features a novel state space representation, and solves the coordinated training among multiple sub-networks belonging to different control tasks in various time scales. Simulation and hardware-in-the-loop experiments are carried out based on a standard driving cycle and a real-world driving cycle with real-time traffic data demonstrate that the MHRL strategy improves fuel economy by 3.0%~7.9% compared to conventional RL-based energy management under various coolant temperature conditions and dynamic driving scenarios.
AbstractList The synergy of reinforcement learning (RL)-based energy management and vehicle-to-everything communication has been proved effective in boosting the fuel economy of connected plug-in hybrid electric vehicles (PHEVs). However, the intricate coupling of mechanical, electrical, thermal states and driving cycle results in a high-dimensional complex energy control problem for PHEVs, which is challenging to optimally solve within the same time scale. To this end, this study designs a multi-horizon reinforcement learning (MHRL)-based energy management of PHEVs, aware of the traffic preview from intelligent transportation systems to optimize the energy flow and thermal states as well as the transient dynamics of the powertrain. The proposed strategy features a novel state space representation, and solves the coordinated training among multiple sub-networks belonging to different control tasks in various time scales. Simulation and hardware-in-the-loop experiments are carried out based on a standard driving cycle and a real-world driving cycle with real-time traffic data demonstrate that the MHRL strategy improves fuel economy by 3.0%~7.9% compared to conventional RL-based energy management under various coolant temperature conditions and dynamic driving scenarios.
Author Zhang, Junzhi
Lei, Nuo
Zhang, Hao
Wang, Zhi
Li, Shengbo Eben
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0001-5395-4017
  surname: Zhang
  fullname: Zhang, Hao
  email: hao_thu@foxmail.com
  organization: School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Nuo
  orcidid: 0000-0001-8731-7497
  surname: Lei
  fullname: Lei, Nuo
  email: lein21@mails.tsinghua.edu.cn
  organization: School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Shengbo Eben
  orcidid: 0000-0003-4923-3633
  surname: Li
  fullname: Li, Shengbo Eben
  email: lein21@mails.tsinghua.edu.cn
  organization: School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Junzhi
  orcidid: 0000-0002-5055-2941
  surname: Zhang
  fullname: Zhang, Junzhi
  email: jzhzhang@tsinghua.edu.cn
  organization: School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Zhi
  orcidid: 0009-0006-3287-9007
  surname: Wang
  fullname: Wang, Zhi
  email: wangzhi@tsinghua.edu.cn
  organization: School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, China
BookMark eNpFkM1KAzEUhYNUsK0-gOAiLzA1Nz_zs5RatVARbHU7ZJKbGkkzkhkXfXtnaMHVOfdwzl18MzKJbURCboEtAFh1v1vvtgvOuFqInPMKigsyBaXKjDHIJ6PnMquYYldk1nXfQyoVwJQ0r7-h99nW6ID0HX10bTJ4wNjTDeoUfdzT1tHHY9QHb-gqYtof6bKNfWpDwESH_nhGND1augqDJu_84D_xy5uA3TW5dDp0eHPWOfl4Wu2WL9nm7Xm9fNhkhnPWZ5bZvMybxhquK20LFM5CJSQiFE0pweVCFiWWOXeSc6GVszaXpZVCaQ7IxJzA6a9JbdcldPVP8gedjjWweoRUj5DqEVJ9hjRs7k4bj4j_feCgqqoUfyiiZps
CODEN ITISFG
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2025.3622917
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 13
ExternalDocumentID 10_1109_TITS_2025_3622917
11215998
Genre orig-research
GrantInformation_xml – fundername: Shuimu Tsinghua Postdoctoral Fellowship
– fundername: National Natural Science Foundation of China
  grantid: T2241003
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
M43
ZY4
ID FETCH-LOGICAL-c220t-d0d686bbdc2a9ad7e3fd1934ee17b841f63478e862f4223a5fdd648d435a21e03
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001600829800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sat Nov 29 07:02:33 EST 2025
Wed Oct 29 06:12:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-d0d686bbdc2a9ad7e3fd1934ee17b841f63478e862f4223a5fdd648d435a21e03
ORCID 0000-0001-5395-4017
0000-0002-5055-2941
0000-0001-8731-7497
0009-0006-3287-9007
0000-0003-4923-3633
PageCount 13
ParticipantIDs crossref_primary_10_1109_TITS_2025_3622917
ieee_primary_11215998
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014511
Score 2.4315593
Snippet The synergy of reinforcement learning (RL)-based energy management and vehicle-to-everything communication has been proved effective in boosting the fuel...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Autoencoders
Data models
Decoding
Energy management
Engines
Generators
Mechanical power transmission
multi-horizon
plug-in hybrid electric vehicles
Reinforcement learning
traffic preview
Transient analysis
Vectors
Vehicle dynamics
Title Multi-Scale Reinforcement Learning of Dynamic Energy Controller for Connected Electrified Vehicles
URI https://ieeexplore.ieee.org/document/11215998
WOSCitedRecordID wos001600829800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCBzyLKlzwwIbl1bMeOR1RawVIhWlC3KLHPUAm1qLT8fmwnpV0Y2KLEkaI7K_fufPceQjfah3H_RBKTFY4IQzkpdekIF1Qk2gIvwEaxCTUYZOOxfqqH1eMsDADE5jNoh8t4lm9nZhlKZZ0kUCH4_GAbbSslq2Gt3yODQLQVyVGZIJqmqyPMhOrO6HE09KkgS9v-d810FCdbB6ENVZUYVPoH__ycQ7Rfo0d8V7n7CG3B9BjtbXAKnqAyjtSSobc94GeIxKgm1gBxzaX6hmcO31dK9LgXZ_9wt-pY_4A59utxbH8xHoziXpTJmTiPVPErvMcmuiZ66fdG3QdSCykQwxhdEEutzGRZWsMKXVgF3FkP3ARAospMJE5yoTLwyY0THi4UqbNWisx6KFWwBCg_RY3pbApnCAsBlhfMmlSxIE6nU1YyzaRikieGuRa6XVk2_6z4MvKYZ1CdBzfkwQ157YYWagarrhfWBj3_4_4F2g2vVxWQS9RYzJdwhXbM92LyNb-O2-EHLKqz2Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UTdSDT4z47MGTSbHbdh89GoRARGIEDbfNbjtVEgMGwd9v212Eiwdvm91ms5lpdr6ZznwfQtfShnH7JCIqyQwRinKSy9wQLqgIpAaegfZiE3GvlwyH8qkcVvezMADgm8-g7i79Wb6eqLkrld0GjgrB5gfraMNJZ5XjWr-HBo5qy9OjMkEkDReHmAGVt4POoG-TQRbW7Q-bSS9PtgxDK7oqPqy09v75Qftot8SP-K5w-AFag_Eh2llhFTxCuR-qJX1rfcDP4KlRla8C4pJN9Q1PDL4vtOhx00__4UbRs_4BU2zXY98AoywcxU0vlDMyFqviV3j3bXRV9NJqDhptUkopEMUYnRFNdZREea4Vy2SmY-BGW-gmAII4T0RgIi7iBGx6Y4QFDFlotI5Eoi2YylgAlB-jyngyhhOEhQDNM6ZVGDMnTydDljPJophFPFDM1NDNwrLpZ8GYkfpMg8rUuSF1bkhLN9RQ1Vl1ubA06Okf96_QVnvw2E27nd7DGdp2ryrqIeeoMpvO4QJtqu_Z6Gt66bfGD7r1tyI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Scale+Reinforcement+Learning+of+Dynamic+Energy+Controller+for+Connected+Electrified+Vehicles&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Zhang%2C+Hao&rft.au=Lei%2C+Nuo&rft.au=Li%2C+Shengbo+Eben&rft.au=Zhang%2C+Junzhi&rft.date=2025&rft.pub=IEEE&rft.issn=1524-9050&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTITS.2025.3622917&rft.externalDocID=11215998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon