Efficient and Accurate Spatial Queries Using Lossy Compressed 3D Geometry Data

3D spatial data management is increasingly vital across various application scenarios, such as GIS, digital twins, human atlases, and tissue imaging. However, the inherent complexity of 3D spatial data, primarily represented by 3D geometries in real-world applications, hinders the efficient evaluati...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 37; no. 5; pp. 2472 - 2487
Main Authors: Teng, Dejun, Li, Zhaochuan, Peng, Zhaohui, Ma, Shuai, Wang, Fusheng
Format: Journal Article
Language:English
Published: IEEE 01.05.2025
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract 3D spatial data management is increasingly vital across various application scenarios, such as GIS, digital twins, human atlases, and tissue imaging. However, the inherent complexity of 3D spatial data, primarily represented by 3D geometries in real-world applications, hinders the efficient evaluation of spatial relationships through resource-intensive geometric computations. Geometric simplification algorithms have been developed to reduce the complexity of 3D representations, albeit at the cost of querying accuracy. Previous work has aimed to address precision loss by leveraging the spatial relationship between the simplified and original 3D object representations. However, this approach relied on specialized geometric simplification algorithms tailored to regions with specific criteria. In this paper, we introduce a novel approach to achieve highly efficient and accurate 3D spatial queries, incorporating geometric computation and simplification. We present a generalized progressive refinement methodology applicable to general geometric simplification algorithms, involving accurate querying of 3D geometry data using low-resolution representations and simplification extents quantified using Hausdorff distances at the facet level. Additionally, we propose techniques for calculating and storing Hausdorff distances efficiently. Extensive experimental evaluations validate the effectiveness of the proposed method which outperforms state-of-the-art systems by a factor of 4 while minimizing computational and storage overhead.
AbstractList 3D spatial data management is increasingly vital across various application scenarios, such as GIS, digital twins, human atlases, and tissue imaging. However, the inherent complexity of 3D spatial data, primarily represented by 3D geometries in real-world applications, hinders the efficient evaluation of spatial relationships through resource-intensive geometric computations. Geometric simplification algorithms have been developed to reduce the complexity of 3D representations, albeit at the cost of querying accuracy. Previous work has aimed to address precision loss by leveraging the spatial relationship between the simplified and original 3D object representations. However, this approach relied on specialized geometric simplification algorithms tailored to regions with specific criteria. In this paper, we introduce a novel approach to achieve highly efficient and accurate 3D spatial queries, incorporating geometric computation and simplification. We present a generalized progressive refinement methodology applicable to general geometric simplification algorithms, involving accurate querying of 3D geometry data using low-resolution representations and simplification extents quantified using Hausdorff distances at the facet level. Additionally, we propose techniques for calculating and storing Hausdorff distances efficiently. Extensive experimental evaluations validate the effectiveness of the proposed method which outperforms state-of-the-art systems by a factor of 4 while minimizing computational and storage overhead.
Author Peng, Zhaohui
Wang, Fusheng
Li, Zhaochuan
Teng, Dejun
Ma, Shuai
Author_xml – sequence: 1
  givenname: Dejun
  orcidid: 0000-0002-0103-8348
  surname: Teng
  fullname: Teng, Dejun
  organization: Shandong University, Jinan, China
– sequence: 2
  givenname: Zhaochuan
  orcidid: 0009-0004-6660-0831
  surname: Li
  fullname: Li, Zhaochuan
  organization: INSPUR Company, Ltd., Jinan, China
– sequence: 3
  givenname: Zhaohui
  orcidid: 0000-0002-1296-2114
  surname: Peng
  fullname: Peng, Zhaohui
  email: pzh@sdu.edu.cn
  organization: Shandong University, Jinan, China
– sequence: 4
  givenname: Shuai
  orcidid: 0000-0002-4050-0443
  surname: Ma
  fullname: Ma, Shuai
  organization: Beihang University, Beijing, China
– sequence: 5
  givenname: Fusheng
  orcidid: 0000-0002-9369-9361
  surname: Wang
  fullname: Wang, Fusheng
  organization: Stony Brook University, Stony Brook, NY, USA
BookMark eNpNkE9PAjEUxBuDiYB-ABMP_QKLff3DtkcCKxqJxgjnTfftq1kDu6RdDnx7IXDwNHOYmUx-IzZou5YYewQxARDuef2-KCZSSDNRRrlcuhs2BGNsJsHB4OSFhkwrnd-xUUq_QgibWxiyjyKEBhtqe-7bms8QD9H3xL_3vm_8ln8dKDaU-CY17Q9fdSkd-bzb7SOlRDVXC76kbkd9PPKF7_09uw1-m-jhqmO2eSnW89ds9bl8m89WGUop-gy1EQ5yqnMPvrLC-KnxwoSKrLCa0CAGRYgVGlNXU6WlcjXVECo7zdGiGjO47GI8XYoUyn1sdj4eSxDlGUh5BlKegZRXIKfO06XTENG_vBPagVV_nMBfIw
CODEN ITKEEH
Cites_doi 10.1109/ISBI.2015.7163845
10.1111/cgf.14395
10.1007/s11704-022-2160-z
10.1145/1073204.1073237
10.1007/s00371-014-1039-x
10.1007/s10619-018-7237-1
10.1145/191843.191880
10.1111/j.1467-8659.2012.03178.x
10.1145/3139958.3140019
10.1016/j.cag.2012.03.023
10.1145/237170.237244
10.14778/3157794.3157803
10.1145/344779.344922
10.14778/3236187.3236213
10.1109/ICDE.2014.6816728
10.1111/j.1467-8659.2009.01507.x
10.1109/TBME.2010.2060338
10.14778/3007263.3007310
10.1145/602259.602266
10.1145/237170.237216
10.1038/s41586-019-1629-x
10.1080/10867651.1997.10487480
10.1109/ICDE.2015.7113382
10.1145/2820783.2820860
10.14778/2002974.2002978
10.1145/3347146.3359351
10.1145/1206049.1206056
10.1145/3347146.3359353
10.14778/2350229.2350268
10.1007/s11704-023-3626-3
10.1145/1360612.1360643
10.1145/3588716
10.1145/3679201
10.1007/978-3-540-87395-2_10
10.1111/j.1467-8659.2010.01789.x
10.1109/2945.675649
10.14778/3554821.3554838
10.1145/93597.98741
10.1109/MDM52706.2021.00024
10.1109/TKDE.2021.3084141
10.4103/jpi.jpi_32_17
10.14778/3514061.3514064
10.14778/2536222.2536227
10.1145/2882903.2915237
10.1109/ISBI.2011.5872714
10.1145/1071610.1071616
10.3748/wjg.v16.i42.5286
10.1145/3502221
10.1201/b14581
10.1145/3139958.3139961
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TKDE.2025.3539729
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 2487
ExternalDocumentID 10_1109_TKDE_2025_3539729
10904918
Genre orig-research
GrantInformation_xml – fundername: Key R & D Program of Shandong Province
  grantid: 2023CXGC010801
– fundername: National Natural Science Foundation of China
  grantid: 62072282; 62172261; 62402285
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-c450917ed7a1ab805a65a05fbe8084ec5ccf3eccbc55db634239ded1fb867c8c3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001459525900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sat Nov 29 08:05:57 EST 2025
Wed Aug 27 02:04:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-c450917ed7a1ab805a65a05fbe8084ec5ccf3eccbc55db634239ded1fb867c8c3
ORCID 0000-0002-1296-2114
0000-0002-4050-0443
0009-0004-6660-0831
0000-0002-0103-8348
0000-0002-9369-9361
PageCount 16
ParticipantIDs crossref_primary_10_1109_TKDE_2025_3539729
ieee_primary_10904918
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref12
(ref43) 2025
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref55
ref54
(ref6) 2025
ref17
ref16
ref19
ref18
(ref27) 2025
Ravada (ref46) 2009
ref51
ref50
ref47
(ref44) 2025
(ref36) 2025
ref9
ref4
ref5
ref40
ref35
ref34
Luebke (ref7) 2003
ref37
Guthe (ref22) 2005; 13
ref31
ref30
ref32
ref2
ref1
(ref45) 2025
ref39
Kamel (ref10)
ref38
Bergen (ref48) 1997; 2
Au (ref49) 2008; 27
Teng (ref24) 2023; 28
(ref42) 2025
ref23
ref26
ref25
ref20
ref64
ref63
ref66
Teng (ref13)
ref21
ref65
Vo (ref41) 2019; 37
ref28
ref29
Sellis (ref11)
Wang (ref33); 17
ref60
ref62
ref61
References_xml – ident: ref38
  doi: 10.1109/ISBI.2015.7163845
– ident: ref28
  doi: 10.1111/cgf.14395
– ident: ref19
  doi: 10.1007/s11704-022-2160-z
– ident: ref65
  doi: 10.1145/1073204.1073237
– ident: ref66
  doi: 10.1007/s00371-014-1039-x
– volume: 37
  start-page: 251
  year: 2019
  ident: ref41
  article-title: MaReIA: A cloud MapReduce based high performance whole slide image analysis framework
  publication-title: Distrib. Parallel Databases
  doi: 10.1007/s10619-018-7237-1
– ident: ref15
  doi: 10.1145/191843.191880
– start-page: 104
  volume-title: Proc. 25th Int. Conf. Extending Database Technol.
  ident: ref13
  article-title: 3DPro: Querying complex three-dimensional data with progressive compression and refinement
– year: 2025
  ident: ref6
  article-title: 3D geospatial
– ident: ref35
  doi: 10.1111/j.1467-8659.2012.03178.x
– ident: ref55
  doi: 10.1145/3139958.3140019
– ident: ref29
  doi: 10.1016/j.cag.2012.03.023
– volume: 28
  start-page: 1
  issue: 2
  year: 2023
  ident: ref24
  article-title: Efficient spatial queries over complex polygons with hybrid representations
  publication-title: Geoinformatica
– year: 2025
  ident: ref36
  article-title: The computational geometry algorithms library
– ident: ref21
  doi: 10.1145/237170.237244
– ident: ref50
  doi: 10.14778/3157794.3157803
– ident: ref63
  doi: 10.1145/344779.344922
– ident: ref58
  doi: 10.14778/3236187.3236213
– year: 2025
  ident: ref44
  article-title: SQL server spatial
– ident: ref30
  doi: 10.1109/ICDE.2014.6816728
– ident: ref62
  doi: 10.1111/j.1467-8659.2009.01507.x
– year: 2025
  ident: ref45
  article-title: MongoDB GeoJSON
– ident: ref40
  doi: 10.1109/TBME.2010.2060338
– ident: ref56
  doi: 10.14778/3007263.3007310
– ident: ref9
  doi: 10.1145/602259.602266
– ident: ref61
  doi: 10.1145/237170.237216
– ident: ref2
  doi: 10.1038/s41586-019-1629-x
– volume: 2
  start-page: 1
  issue: 4
  year: 1997
  ident: ref48
  article-title: Efficient collision detection of complex deformable models using AABB trees
  publication-title: J. Graph. Tools
  doi: 10.1080/10867651.1997.10487480
– ident: ref53
  doi: 10.1109/ICDE.2015.7113382
– ident: ref54
  doi: 10.1145/2820783.2820860
– ident: ref25
  doi: 10.14778/2002974.2002978
– volume: 17
  start-page: 4507
  issue: 12
  volume-title: Proc. VLDB Endowment
  ident: ref33
  article-title: High-performance spatial data analytics: Systematic R&D for scale-out and scale-up solutions from the past to now
– ident: ref4
  doi: 10.1145/3347146.3359351
– ident: ref31
  doi: 10.1145/1206049.1206056
– ident: ref5
  doi: 10.1145/3347146.3359353
– ident: ref14
  doi: 10.14778/2350229.2350268
– start-page: 500
  volume-title: Proc. 20th VLDB Int. Conf. Very Large Data Bases
  ident: ref10
  article-title: Hilbert R-tree: An improved R-tree using fractals
– ident: ref32
  doi: 10.1007/s11704-023-3626-3
– year: 2025
  ident: ref42
  article-title: DB2 spatial extender
– volume: 27
  start-page: 1
  issue: 3
  year: 2008
  ident: ref49
  article-title: Skeleton extraction by mesh contraction
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1360612.1360643
– ident: ref51
  doi: 10.1145/3588716
– year: 2025
  ident: ref27
  article-title: AABB-tree
– ident: ref37
  doi: 10.1145/3679201
– start-page: 153
  volume-title: 3D Geo-Information Sciences
  year: 2009
  ident: ref46
  article-title: Query processing in 3D spatial databases: Experiences with oracle spatial 11G
  doi: 10.1007/978-3-540-87395-2_10
– ident: ref64
  doi: 10.1111/j.1467-8659.2010.01789.x
– volume: 13
  start-page: 41
  year: 2005
  ident: ref22
  article-title: Fast and accurate Hausdorff distance calculation between meshes
  publication-title: J. WSCG
– ident: ref16
  doi: 10.1109/2945.675649
– ident: ref47
  doi: 10.14778/3554821.3554838
– ident: ref12
  doi: 10.1145/93597.98741
– ident: ref23
  doi: 10.1109/MDM52706.2021.00024
– ident: ref60
  doi: 10.1109/TKDE.2021.3084141
– start-page: 507
  volume-title: Proc. 13th VLDB Int. Conf. Very Large Data Bases
  ident: ref11
  article-title: The R-tree: A dynamic index for multi-dimensional objects
– ident: ref1
  doi: 10.4103/jpi.jpi_32_17
– volume-title: Level of Detail for 3D Graphics
  year: 2003
  ident: ref7
– ident: ref59
  doi: 10.14778/3514061.3514064
– ident: ref52
  doi: 10.14778/2536222.2536227
– ident: ref57
  doi: 10.1145/2882903.2915237
– ident: ref39
  doi: 10.1109/ISBI.2011.5872714
– ident: ref26
  doi: 10.1145/1071610.1071616
– ident: ref34
  doi: 10.3748/wjg.v16.i42.5286
– year: 2025
  ident: ref43
  article-title: MySQL spatial
– ident: ref18
  doi: 10.1145/3502221
– ident: ref17
  doi: 10.1201/b14581
– ident: ref20
  doi: 10.1145/3139958.3139961
SSID ssj0008781
Score 2.4614043
Snippet 3D spatial data management is increasingly vital across various application scenarios, such as GIS, digital twins, human atlases, and tissue imaging. However,...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 2472
SubjectTerms 3D data management
Accuracy
Complexity theory
Filtering
Geometry
Spatial database
Spatial databases
Spatial indexes
Spatial resolution
Three-dimensional displays
Training
Upper bound
Title Efficient and Accurate Spatial Queries Using Lossy Compressed 3D Geometry Data
URI https://ieeexplore.ieee.org/document/10904918
Volume 37
WOSCitedRecordID wos001459525900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7YxAEODMYQ46UcOCF1S9dmSY8T20ACTSANabcqTRyJAx3aWqT9e5y0g104cKuiJkrtuLZj-zMhtwmOJoxpFHH0TeLIAspcHAUm1JZZ1EcJWN9sQsxmcrFIXupidV8LAwA--Qx67tHH8s1Sl-6qrO-SCOMklA3SEEJUxVo_v10pfEdSdC_QKYpiUYcwcU5__jSeoCs44L2Io_715uSvEtrpquKVyrT1z-0ck6PaeqSjit0nZA_yNmltOzPQWlDb5HAHZvCUzCYeJwIXoyo3dKR16QAiqGtHjMePvpYO7XhNffoAfcYdb6hb0-OKGxqN6QMsP6BYbehYFapD3qaT-f1jUPdRCPRgwIpAx84qEGCEClUmGVdDrhi3GUgmY9BcaxshKzPNucmGHhPQgAltJodCSx2dkWa-zOGcUCZcWBSE0UrEEr9eoomCJhgAt-jtQpfcbQmbflZwGal3M1iSOi6kjgtpzYUu6Tii7rxY0fPij_FLcuCmV-mGV6RZrEq4Jvv6q3hfr278afgGYvayBA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIAEHxlOMZw6ckDbSNVnSI2IbQxsTSEParWoTV-LAhkaHtH-Pk3awCwduVdRaqR3Xdm1_BriOaDXi3JCKU2wiwgxJ50RYt4HJeEb2KMLMD5tQw6Eej6Pnslnd98Igoi8-w4a79Ll8OzVz96vs1hURiijQ67AhhWgGRbvWz4dXKz-TlAIMCotCocokJj11O-q3OxQMNmUjlGSBvUP5a4ZW5qp4s9Kt_nNDe7Bb-o_srhD4Pqzh5ACqy9kMrFTVA9hZARo8hGHHI0UQMZZMLLszZu4gIpgbSEwHkL3MHd7xJ_MFBGxAO14wR9Mji1sWttkDTt8xny1YO8mTI3jtdkb3vXo5SaFumk2e141wfoFCq5IgSTWXSUsmXGYpaq4FGmlMFpIwUyOlTVseFdCiDbJUt5TRJjyGymQ6wRNgXLnEKCprEiU0vb0mJ4WcMESZUbyLNbhZMjb-KAAzYh9o8Ch2UoidFOJSCjU4ckxdubHg5-kf61ew1Rs9DeLB47B_BtuOVFF8eA6VfDbHC9g0X_nb5-zSn4xv1Te1Sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+Accurate+Spatial+Queries+Using+Lossy+Compressed+3D+Geometry+Data&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Teng%2C+Dejun&rft.au=Li%2C+Zhaochuan&rft.au=Peng%2C+Zhaohui&rft.au=Ma%2C+Shuai&rft.date=2025-05-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=37&rft.issue=5&rft.spage=2472&rft.epage=2487&rft_id=info:doi/10.1109%2FTKDE.2025.3539729&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2025_3539729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon