Efficient and Accurate Spatial Queries Using Lossy Compressed 3D Geometry Data
3D spatial data management is increasingly vital across various application scenarios, such as GIS, digital twins, human atlases, and tissue imaging. However, the inherent complexity of 3D spatial data, primarily represented by 3D geometries in real-world applications, hinders the efficient evaluati...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on knowledge and data engineering Jg. 37; H. 5; S. 2472 - 2487 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.05.2025
|
| Schlagworte: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | 3D spatial data management is increasingly vital across various application scenarios, such as GIS, digital twins, human atlases, and tissue imaging. However, the inherent complexity of 3D spatial data, primarily represented by 3D geometries in real-world applications, hinders the efficient evaluation of spatial relationships through resource-intensive geometric computations. Geometric simplification algorithms have been developed to reduce the complexity of 3D representations, albeit at the cost of querying accuracy. Previous work has aimed to address precision loss by leveraging the spatial relationship between the simplified and original 3D object representations. However, this approach relied on specialized geometric simplification algorithms tailored to regions with specific criteria. In this paper, we introduce a novel approach to achieve highly efficient and accurate 3D spatial queries, incorporating geometric computation and simplification. We present a generalized progressive refinement methodology applicable to general geometric simplification algorithms, involving accurate querying of 3D geometry data using low-resolution representations and simplification extents quantified using Hausdorff distances at the facet level. Additionally, we propose techniques for calculating and storing Hausdorff distances efficiently. Extensive experimental evaluations validate the effectiveness of the proposed method which outperforms state-of-the-art systems by a factor of 4 while minimizing computational and storage overhead. |
|---|---|
| AbstractList | 3D spatial data management is increasingly vital across various application scenarios, such as GIS, digital twins, human atlases, and tissue imaging. However, the inherent complexity of 3D spatial data, primarily represented by 3D geometries in real-world applications, hinders the efficient evaluation of spatial relationships through resource-intensive geometric computations. Geometric simplification algorithms have been developed to reduce the complexity of 3D representations, albeit at the cost of querying accuracy. Previous work has aimed to address precision loss by leveraging the spatial relationship between the simplified and original 3D object representations. However, this approach relied on specialized geometric simplification algorithms tailored to regions with specific criteria. In this paper, we introduce a novel approach to achieve highly efficient and accurate 3D spatial queries, incorporating geometric computation and simplification. We present a generalized progressive refinement methodology applicable to general geometric simplification algorithms, involving accurate querying of 3D geometry data using low-resolution representations and simplification extents quantified using Hausdorff distances at the facet level. Additionally, we propose techniques for calculating and storing Hausdorff distances efficiently. Extensive experimental evaluations validate the effectiveness of the proposed method which outperforms state-of-the-art systems by a factor of 4 while minimizing computational and storage overhead. |
| Author | Peng, Zhaohui Wang, Fusheng Li, Zhaochuan Teng, Dejun Ma, Shuai |
| Author_xml | – sequence: 1 givenname: Dejun orcidid: 0000-0002-0103-8348 surname: Teng fullname: Teng, Dejun organization: Shandong University, Jinan, China – sequence: 2 givenname: Zhaochuan orcidid: 0009-0004-6660-0831 surname: Li fullname: Li, Zhaochuan organization: INSPUR Company, Ltd., Jinan, China – sequence: 3 givenname: Zhaohui orcidid: 0000-0002-1296-2114 surname: Peng fullname: Peng, Zhaohui email: pzh@sdu.edu.cn organization: Shandong University, Jinan, China – sequence: 4 givenname: Shuai orcidid: 0000-0002-4050-0443 surname: Ma fullname: Ma, Shuai organization: Beihang University, Beijing, China – sequence: 5 givenname: Fusheng orcidid: 0000-0002-9369-9361 surname: Wang fullname: Wang, Fusheng organization: Stony Brook University, Stony Brook, NY, USA |
| BookMark | eNpNkE9PAjEUxBuDiYB-ABMP_QKLff3DtkcCKxqJxgjnTfftq1kDu6RdDnx7IXDwNHOYmUx-IzZou5YYewQxARDuef2-KCZSSDNRRrlcuhs2BGNsJsHB4OSFhkwrnd-xUUq_QgibWxiyjyKEBhtqe-7bms8QD9H3xL_3vm_8ln8dKDaU-CY17Q9fdSkd-bzb7SOlRDVXC76kbkd9PPKF7_09uw1-m-jhqmO2eSnW89ds9bl8m89WGUop-gy1EQ5yqnMPvrLC-KnxwoSKrLCa0CAGRYgVGlNXU6WlcjXVECo7zdGiGjO47GI8XYoUyn1sdj4eSxDlGUh5BlKegZRXIKfO06XTENG_vBPagVV_nMBfIw |
| CODEN | ITKEEH |
| Cites_doi | 10.1109/ISBI.2015.7163845 10.1111/cgf.14395 10.1007/s11704-022-2160-z 10.1145/1073204.1073237 10.1007/s00371-014-1039-x 10.1007/s10619-018-7237-1 10.1145/191843.191880 10.1111/j.1467-8659.2012.03178.x 10.1145/3139958.3140019 10.1016/j.cag.2012.03.023 10.1145/237170.237244 10.14778/3157794.3157803 10.1145/344779.344922 10.14778/3236187.3236213 10.1109/ICDE.2014.6816728 10.1111/j.1467-8659.2009.01507.x 10.1109/TBME.2010.2060338 10.14778/3007263.3007310 10.1145/602259.602266 10.1145/237170.237216 10.1038/s41586-019-1629-x 10.1080/10867651.1997.10487480 10.1109/ICDE.2015.7113382 10.1145/2820783.2820860 10.14778/2002974.2002978 10.1145/3347146.3359351 10.1145/1206049.1206056 10.1145/3347146.3359353 10.14778/2350229.2350268 10.1007/s11704-023-3626-3 10.1145/1360612.1360643 10.1145/3588716 10.1145/3679201 10.1007/978-3-540-87395-2_10 10.1111/j.1467-8659.2010.01789.x 10.1109/2945.675649 10.14778/3554821.3554838 10.1145/93597.98741 10.1109/MDM52706.2021.00024 10.1109/TKDE.2021.3084141 10.4103/jpi.jpi_32_17 10.14778/3514061.3514064 10.14778/2536222.2536227 10.1145/2882903.2915237 10.1109/ISBI.2011.5872714 10.1145/1071610.1071616 10.3748/wjg.v16.i42.5286 10.1145/3502221 10.1201/b14581 10.1145/3139958.3139961 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TKDE.2025.3539729 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 2487 |
| ExternalDocumentID | 10_1109_TKDE_2025_3539729 10904918 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Key R & D Program of Shandong Province grantid: 2023CXGC010801 – fundername: National Natural Science Foundation of China grantid: 62072282; 62172261; 62402285 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TAF TN5 UHB VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c220t-c450917ed7a1ab805a65a05fbe8084ec5ccf3eccbc55db634239ded1fb867c8c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001459525900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sat Nov 29 08:05:57 EST 2025 Wed Aug 27 02:04:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c220t-c450917ed7a1ab805a65a05fbe8084ec5ccf3eccbc55db634239ded1fb867c8c3 |
| ORCID | 0000-0002-1296-2114 0000-0002-4050-0443 0009-0004-6660-0831 0000-0002-0103-8348 0000-0002-9369-9361 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TKDE_2025_3539729 ieee_primary_10904918 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref57 ref12 (ref43) 2025 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref55 ref54 (ref6) 2025 ref17 ref16 ref19 ref18 (ref27) 2025 Ravada (ref46) 2009 ref51 ref50 ref47 (ref44) 2025 (ref36) 2025 ref9 ref4 ref5 ref40 ref35 ref34 Luebke (ref7) 2003 ref37 Guthe (ref22) 2005; 13 ref31 ref30 ref32 ref2 ref1 (ref45) 2025 ref39 Kamel (ref10) ref38 Bergen (ref48) 1997; 2 Au (ref49) 2008; 27 Teng (ref24) 2023; 28 (ref42) 2025 ref23 ref26 ref25 ref20 ref64 ref63 ref66 Teng (ref13) ref21 ref65 Vo (ref41) 2019; 37 ref28 ref29 Sellis (ref11) Wang (ref33); 17 ref60 ref62 ref61 |
| References_xml | – ident: ref38 doi: 10.1109/ISBI.2015.7163845 – ident: ref28 doi: 10.1111/cgf.14395 – ident: ref19 doi: 10.1007/s11704-022-2160-z – ident: ref65 doi: 10.1145/1073204.1073237 – ident: ref66 doi: 10.1007/s00371-014-1039-x – volume: 37 start-page: 251 year: 2019 ident: ref41 article-title: MaReIA: A cloud MapReduce based high performance whole slide image analysis framework publication-title: Distrib. Parallel Databases doi: 10.1007/s10619-018-7237-1 – ident: ref15 doi: 10.1145/191843.191880 – start-page: 104 volume-title: Proc. 25th Int. Conf. Extending Database Technol. ident: ref13 article-title: 3DPro: Querying complex three-dimensional data with progressive compression and refinement – year: 2025 ident: ref6 article-title: 3D geospatial – ident: ref35 doi: 10.1111/j.1467-8659.2012.03178.x – ident: ref55 doi: 10.1145/3139958.3140019 – ident: ref29 doi: 10.1016/j.cag.2012.03.023 – volume: 28 start-page: 1 issue: 2 year: 2023 ident: ref24 article-title: Efficient spatial queries over complex polygons with hybrid representations publication-title: Geoinformatica – year: 2025 ident: ref36 article-title: The computational geometry algorithms library – ident: ref21 doi: 10.1145/237170.237244 – ident: ref50 doi: 10.14778/3157794.3157803 – ident: ref63 doi: 10.1145/344779.344922 – ident: ref58 doi: 10.14778/3236187.3236213 – year: 2025 ident: ref44 article-title: SQL server spatial – ident: ref30 doi: 10.1109/ICDE.2014.6816728 – ident: ref62 doi: 10.1111/j.1467-8659.2009.01507.x – year: 2025 ident: ref45 article-title: MongoDB GeoJSON – ident: ref40 doi: 10.1109/TBME.2010.2060338 – ident: ref56 doi: 10.14778/3007263.3007310 – ident: ref9 doi: 10.1145/602259.602266 – ident: ref61 doi: 10.1145/237170.237216 – ident: ref2 doi: 10.1038/s41586-019-1629-x – volume: 2 start-page: 1 issue: 4 year: 1997 ident: ref48 article-title: Efficient collision detection of complex deformable models using AABB trees publication-title: J. Graph. Tools doi: 10.1080/10867651.1997.10487480 – ident: ref53 doi: 10.1109/ICDE.2015.7113382 – ident: ref54 doi: 10.1145/2820783.2820860 – ident: ref25 doi: 10.14778/2002974.2002978 – volume: 17 start-page: 4507 issue: 12 volume-title: Proc. VLDB Endowment ident: ref33 article-title: High-performance spatial data analytics: Systematic R&D for scale-out and scale-up solutions from the past to now – ident: ref4 doi: 10.1145/3347146.3359351 – ident: ref31 doi: 10.1145/1206049.1206056 – ident: ref5 doi: 10.1145/3347146.3359353 – ident: ref14 doi: 10.14778/2350229.2350268 – start-page: 500 volume-title: Proc. 20th VLDB Int. Conf. Very Large Data Bases ident: ref10 article-title: Hilbert R-tree: An improved R-tree using fractals – ident: ref32 doi: 10.1007/s11704-023-3626-3 – year: 2025 ident: ref42 article-title: DB2 spatial extender – volume: 27 start-page: 1 issue: 3 year: 2008 ident: ref49 article-title: Skeleton extraction by mesh contraction publication-title: ACM Trans. Graph. doi: 10.1145/1360612.1360643 – ident: ref51 doi: 10.1145/3588716 – year: 2025 ident: ref27 article-title: AABB-tree – ident: ref37 doi: 10.1145/3679201 – start-page: 153 volume-title: 3D Geo-Information Sciences year: 2009 ident: ref46 article-title: Query processing in 3D spatial databases: Experiences with oracle spatial 11G doi: 10.1007/978-3-540-87395-2_10 – ident: ref64 doi: 10.1111/j.1467-8659.2010.01789.x – volume: 13 start-page: 41 year: 2005 ident: ref22 article-title: Fast and accurate Hausdorff distance calculation between meshes publication-title: J. WSCG – ident: ref16 doi: 10.1109/2945.675649 – ident: ref47 doi: 10.14778/3554821.3554838 – ident: ref12 doi: 10.1145/93597.98741 – ident: ref23 doi: 10.1109/MDM52706.2021.00024 – ident: ref60 doi: 10.1109/TKDE.2021.3084141 – start-page: 507 volume-title: Proc. 13th VLDB Int. Conf. Very Large Data Bases ident: ref11 article-title: The R-tree: A dynamic index for multi-dimensional objects – ident: ref1 doi: 10.4103/jpi.jpi_32_17 – volume-title: Level of Detail for 3D Graphics year: 2003 ident: ref7 – ident: ref59 doi: 10.14778/3514061.3514064 – ident: ref52 doi: 10.14778/2536222.2536227 – ident: ref57 doi: 10.1145/2882903.2915237 – ident: ref39 doi: 10.1109/ISBI.2011.5872714 – ident: ref26 doi: 10.1145/1071610.1071616 – ident: ref34 doi: 10.3748/wjg.v16.i42.5286 – year: 2025 ident: ref43 article-title: MySQL spatial – ident: ref18 doi: 10.1145/3502221 – ident: ref17 doi: 10.1201/b14581 – ident: ref20 doi: 10.1145/3139958.3139961 |
| SSID | ssj0008781 |
| Score | 2.4614043 |
| Snippet | 3D spatial data management is increasingly vital across various application scenarios, such as GIS, digital twins, human atlases, and tissue imaging. However,... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 2472 |
| SubjectTerms | 3D data management Accuracy Complexity theory Filtering Geometry Spatial database Spatial databases Spatial indexes Spatial resolution Three-dimensional displays Training Upper bound |
| Title | Efficient and Accurate Spatial Queries Using Lossy Compressed 3D Geometry Data |
| URI | https://ieeexplore.ieee.org/document/10904918 |
| Volume | 37 |
| WOSCitedRecordID | wos001459525900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_o8KAHp3Pi_CIHT0K3pmma9DjcpuAYChN2K2k-wIOdbK2w_94k7XQXD95KaB7hvbTv_ZL3fg_gDgsTEqPCAKucBbHFIIGIjQ6EJjLJY6yM8iSuUzab8cUifWmK1X0tjNbaJ5_pvnv0d_lqKSt3VDZwSYRxivk-7DPG6mKtn98uZ74jqYUXFhSRmDVXmHbOYP48GlsoGNE-odb_-nDy1wntdFXxTmXS_udyTuC4iR7RsDb3KezpogPtbWcG1HyoHTjaoRk8g9nY80RYYUgUCg2lrBxBBHLtiO32Q6-VYzteI58-gKZ2xRvkZHpecYXICD3q5YcuVxs0EqXowttkPH94Cpo-CoGMorAMZOyiAqYVE1jkPKQioSKkJtc85LGWVEpDrClzSanKE88JqLTCJucJk1ySc2gVy0JfABLKODoZKzAyjqteYIKp5NgDjzA1PbjfKjb7rOkyMg8zwjRzVsicFbLGCj3oOqXuvFjr8_KP8Ss4dNPrdMNraJWrSt_Agfwq39erW78bvgEGzLKD |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGCqWI8vTAhJQSJ3bijBVtKWqpQCpSt8jxQ2KgRW2C1H-P7aTQhYEtiuKTdWf77ovvvgO4xVz7oZa-h2UWe8RgEI8TrTyuQhFlBEstHYnrKB6P2XSavFTF6q4WRinlks9U2z66u3w5F4X9VXZvkwhJgtk27FBCAlyWa_0cvCx2PUkNwDCwKCRxdYlpRt1Pht2eAYMBbYfUeGAXUP66oY2-Ks6t9Ov_nNARHFbxI-qUBj-GLTVrQH3dmwFVW7UBBxtEgycw7jmmCCMM8ZlEHSEKSxGBbENiswDRa2H5jpfIJRCgkZnxClmZjllcorCLHtX8Q-WLFerynDfhrd-bPAy8qpOCJ4LAzz1BbFwQKxlzzDPmUx5R7lOdKeYzogQVQofGmJmgVGaRYwWUSmKdsSgWTISnUJvNZ-oMEJfaEsoYgYG2bPUch5gKhh308BPdgru1YtPPkjAjdUDDT1JrhdRaIa2s0IKmVerGh6U-z_94fwN7g8nzKB09jYcXsG9FlcmHl1DLF4W6gl3xlb8vF9duZXwDgHO1yg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+Accurate+Spatial+Queries+Using+Lossy+Compressed+3D+Geometry+Data&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Teng%2C+Dejun&rft.au=Li%2C+Zhaochuan&rft.au=Peng%2C+Zhaohui&rft.au=Ma%2C+Shuai&rft.date=2025-05-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=37&rft.issue=5&rft.spage=2472&rft.epage=2487&rft_id=info:doi/10.1109%2FTKDE.2025.3539729&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2025_3539729 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |