LQ-GNN: A Graph Neural Network Model for Response Time Prediction of Microservice-Based Applications in the Computing Continuum

To address the challenges posed by the deployment of microservices of future end-user applications in the cloud continuum, a performance prediction model working together with a network elasticity controller will be needed. With that aim, this work introduces Layered Queuing-Graph Neural Networks (L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems Jg. 36; H. 12; S. 2566 - 2577
Hauptverfasser: Richart, Matias, Gorricho, Juan-Luis, Baliosian, Javier, Contreras, Luis M., Muniz, Alejandro, Serrat, Joan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2025
Schlagworte:
ISSN:1045-9219, 1558-2183
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To address the challenges posed by the deployment of microservices of future end-user applications in the cloud continuum, a performance prediction model working together with a network elasticity controller will be needed. With that aim, this work introduces Layered Queuing-Graph Neural Networks (LQ-GNN), a novel Machine Learning (ML) approach to develop a generalized performance prediction model for microservice-based applications. Unlike previous works focused on individual applications, our proposal aims for a versatile model applicable to any microservice-based application, integrating the Layered Queueing Network (LQN) modeling with Graph Neural Networks (GNN). LQ-GNN allows to efficiently estimate the response time of applications under different resource allocations and placements on the computing continuum. The obtained evaluation results indicate that the proposed model achieves a prediction error below 10% when considering different evaluation scenarios. Compared to existing methodologies, our approach balances prediction accuracy and computational efficiency, making it viable for real-time deployments. Consequently, ML-based performance prediction can significantly enhance the resource management and elasticity control of microservice-based architectures, leading to more resilient and efficient systems.
AbstractList To address the challenges posed by the deployment of microservices of future end-user applications in the cloud continuum, a performance prediction model working together with a network elasticity controller will be needed. With that aim, this work introduces Layered Queuing-Graph Neural Networks (LQ-GNN), a novel Machine Learning (ML) approach to develop a generalized performance prediction model for microservice-based applications. Unlike previous works focused on individual applications, our proposal aims for a versatile model applicable to any microservice-based application, integrating the Layered Queueing Network (LQN) modeling with Graph Neural Networks (GNN). LQ-GNN allows to efficiently estimate the response time of applications under different resource allocations and placements on the computing continuum. The obtained evaluation results indicate that the proposed model achieves a prediction error below 10% when considering different evaluation scenarios. Compared to existing methodologies, our approach balances prediction accuracy and computational efficiency, making it viable for real-time deployments. Consequently, ML-based performance prediction can significantly enhance the resource management and elasticity control of microservice-based architectures, leading to more resilient and efficient systems.
Author Contreras, Luis M.
Serrat, Joan
Richart, Matias
Gorricho, Juan-Luis
Muniz, Alejandro
Baliosian, Javier
Author_xml – sequence: 1
  givenname: Matias
  orcidid: 0000-0002-9152-3522
  surname: Richart
  fullname: Richart, Matias
  email: mrichart@fing.edu.uy
  organization: Computer Science Department, School of Engineering, University of the Republic, Montevideo, Uruguay
– sequence: 2
  givenname: Juan-Luis
  orcidid: 0000-0002-6280-1546
  surname: Gorricho
  fullname: Gorricho, Juan-Luis
  email: juan.luis.gorricho@upc.edu
  organization: Department of Network Engineering, Polytechnic University of Catalonia, Barcelona, Spain
– sequence: 3
  givenname: Javier
  orcidid: 0000-0003-1867-5682
  surname: Baliosian
  fullname: Baliosian, Javier
  email: baliosian@fing.edu.uy
  organization: Computer Science Department, School of Engineering, University of the Republic, Montevideo, Uruguay
– sequence: 4
  givenname: Luis M.
  orcidid: 0000-0003-0309-5925
  surname: Contreras
  fullname: Contreras, Luis M.
  email: luismiguel.contrerasmurillo@telefonica.com
  organization: Telefónica CTIO, Madrid, Spain
– sequence: 5
  givenname: Alejandro
  surname: Muniz
  fullname: Muniz, Alejandro
  email: alejandro.muniz@telefonica.com
  organization: Telefónica CTIO, Madrid, Spain
– sequence: 6
  givenname: Joan
  surname: Serrat
  fullname: Serrat, Joan
  email: juan.serrat@upc.edu
  organization: Department of Network Engineering, Polytechnic University of Catalonia, Barcelona, Spain
BookMark eNpNkLFOwzAURS1UJErhA5AY_AMptmMnDlspUJDaUqDMUeI8U0MSR3YCYuLXSdQOTOcO9z49nVM0qm0NCF1QMqWUJFfbze3rlBEmpqGIOKP8CI2pEDJgVIajPhMugoTR5ASdev9BCOWC8DH6XT4Hi_X6Gs_wwmXNDq-hc1nZo_227hOvbAEl1tbhF_CNrT3grakAbxwURrXG1thqvDLKWQ_uyygIbjIPBZ41TWlUNjQ8NjVud4Dntmq61tTvfap7dl11ho51Vno4P3CC3u7vtvOHYPm0eJzPloFijLRBriSRFKJYypjzKBdKFBCTnAhaFFrySAArNCEJSZJYhyqLZMg4k1GUKZ1rGk4Q3d8dHvUOdNo4U2XuJ6UkHQymg8F0MJgeDPaby_3GAMC_fhJHnIrwD2nqb4U
CODEN ITDSEO
Cites_doi 10.21203/rs.3.rs-3925329/v1
10.1145/3580305.3599465
10.1109/MNET.001.2100266
10.1145/3297858.3304013
10.1145/3445814.3446693
10.1109/CloudNet55617.2022.9978781
10.1145/584369.584402
10.1109/TNET.2023.3269983
10.1109/TNNLS.2020.2978386
10.1109/MIC.2021.3050613
10.4108/icst.valuetools2009.7526
10.1145/1071021.1071031
10.1007/s00450-016-0337-0
10.1145/3485983.3494866
10.1145/358396.358403
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TPDS.2025.3564214
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 2577
ExternalDocumentID 10_1109_TPDS_2025_3564214
10976415
Genre orig-research
GrantInformation_xml – fundername: Agencia Nacional de Investigación e Innovación of Uruguay
  grantid: FCE_3_2024_1_180928
– fundername: Ministry of Research and Universities of the Government of Catalonia
  grantid: 2022-BP-00099
– fundername: Ministerio de Ciencia e Innovación of Spain
  grantid: PID2022-137329OB-C41/MCIN/AEI/10.13039/501100011033
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
TWZ
UHB
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-bc8081e67887446b5c5de70b051ddf8465e2df0090997f3ca683242866acfbf13
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001596847800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9219
IngestDate Sat Nov 29 07:09:19 EST 2025
Sat Oct 25 03:09:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-bc8081e67887446b5c5de70b051ddf8465e2df0090997f3ca683242866acfbf13
ORCID 0000-0003-1867-5682
0000-0002-9152-3522
0000-0002-6280-1546
0000-0003-0309-5925
PageCount 12
ParticipantIDs ieee_primary_10976415
crossref_primary_10_1109_TPDS_2025_3564214
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References Chapel (ref6) 2020
Fourati (ref7) 2024
Gias (ref17)
ref11
Franks (ref16) 2022
ref10
ref2
(ref15) 2024
Incerto (ref18)
Arfeen (ref19) 2019; 141
ref23
ref26
ref25
ref22
Franks (ref13) 2009; 35
ref28
Swoyer (ref3) 2020
ref27
ref29
ref8
Cerny (ref24)
Baliosian (ref5) 2021; 59
ref9
Nguyen (ref12) 2022
ref4
Amazon (ref14) 2024
Zhang (ref20) 2019
Nguyen (ref21) 2022; 22
Swoyer (ref1) 2020
References_xml – year: 2020
  ident: ref1
  article-title: Cloud adoption in 2020
– start-page: 1994
  volume-title: Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst.
  ident: ref17
  article-title: ATOM: Model-driven autoscaling for microservices
– year: 2024
  ident: ref7
  article-title: Cloud elasticity of microservices-based applications: A survey
  doi: 10.21203/rs.3.rs-3925329/v1
– ident: ref11
  doi: 10.1145/3580305.3599465
– ident: ref28
  doi: 10.1109/MNET.001.2100266
– ident: ref8
  doi: 10.1145/3297858.3304013
– year: 2024
  ident: ref14
  article-title: Application scaling - AWS auto scaling - AWS
– ident: ref10
  doi: 10.1145/3445814.3446693
– year: 2024
  ident: ref15
  article-title: Horizontal pod autoscaling
– year: 2022
  ident: ref12
  article-title: Graph-PHPA: Graph-based proactive horizontal pod autoscaling for microservices using LSTM-GNN
  doi: 10.1109/CloudNet55617.2022.9978781
– ident: ref22
  doi: 10.1145/584369.584402
– volume: 35
  start-page: 148
  issue: 2
  volume-title: IEEE Trans. Softw. Eng.
  year: 2009
  ident: ref13
  article-title: Enhanced modeling and solution of layered queueing networks
– start-page: 67
  volume-title: Proc. IEEE Int. Conf. Autonomic Comput. Self-Organizing Syst.
  ident: ref18
  article-title: Opt: An efficient optimal autoscaler for microservice applications
– year: 2020
  ident: ref3
  article-title: Microservices adoption in 2020
– ident: ref26
  doi: 10.1109/TNET.2023.3269983
– volume: 59
  start-page: 34
  issue: 10
  volume-title: IEEE Commun. Mag.
  year: 2021
  ident: ref5
  article-title: An efficient algorithm for fast service edge selection in cloud-based telco networks
– ident: ref27
  doi: 10.1109/TNNLS.2020.2978386
– year: 2020
  ident: ref6
  article-title: Wasted cloud spend to exceed 17.6 billion in 2020, fueled by cloud computing growth
– year: 2022
  ident: ref16
  article-title: Layered queueing network solver and simulator user manual
– volume: 141
  start-page: 1
  volume-title: J. Netw. Comput. Appl.
  year: 2019
  ident: ref19
  article-title: The role of the weibull distribution in modelling traffic in internet access and backbone core networks
– ident: ref2
  doi: 10.1109/MIC.2021.3050613
– ident: ref25
  doi: 10.4108/icst.valuetools2009.7526
– start-page: 39
  volume-title: Proc. IEEE Int. Conf. Service-Oriented Syst. Eng.
  ident: ref24
  article-title: Microservice architecture reconstruction and visualization techniques: A review
– ident: ref23
  doi: 10.1145/1071021.1071031
– ident: ref4
  doi: 10.1007/s00450-016-0337-0
– ident: ref9
  doi: 10.1145/3485983.3494866
– year: 2019
  ident: ref20
  article-title: uqSim: Scalable and validated simulation of cloud microservices
– volume: 22
  issue: 23
  volume-title: Sensors
  year: 2022
  ident: ref21
  article-title: A survey on graph neural networks for microservice-based cloud applications
– ident: ref29
  doi: 10.1145/358396.358403
SSID ssj0014504
Score 2.4709432
Snippet To address the challenges posed by the deployment of microservices of future end-user applications in the cloud continuum, a performance prediction model...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 2566
SubjectTerms Cloud computing
Computational modeling
Computing continuum
Elasticity
Graph neural networks
Machine learning
Microservice architectures
microservice-based applications
Predictive models
Quality of service
Resource management
Time factors
Title LQ-GNN: A Graph Neural Network Model for Response Time Prediction of Microservice-Based Applications in the Computing Continuum
URI https://ieeexplore.ieee.org/document/10976415
Volume 36
WOSCitedRecordID wos001596847800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2183
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014504
  issn: 1045-9219
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAoxRRXrqBCcmQJnEebOU9lKg8xRbV9lmqBCnqg5W_js9OURkY2KIoTix9Pvsu3313jB3JdiJz1U95ogPksZExz1UecylkEPetQWnH6L5006LIXl_zXi1Wd1oYRHTJZ3hCl47L10M1pV9lp8SWJk5SvpimiRdr_VAGsXC9Am14IXhu7bCmMO2Y06fe5aMNBUNxEgkSdsa_DqG5riruULle_-d0Ntha7T1Cx8O9yRawarD1WWcGqA21wVbnygxusa_uPb8pijPowA3VpwaqyGFfU_gUcKB-aG9gvVd48BmzCKQMgd6IWBxCDoYG7ih1b-y3Fn5uDz8NnTn2GwYVWGcS_GTsd4EKXw2q6fS9yZ6vr54ubnndeIGrMAwmXCrqx4EJZRracFEKJTSmgbQGrLWxHovAUBvrnZHs1kSqn2Tkl2VJ0ldGmna0zZaqYYU7DFSYGSGjADHVMdWOM2hXgURUQVtjJlvseIZE-eHra5QuLgnykmArCbayhq3FmoTC3IMegN0_7u-xFRrus0_22dJkNMUDtqw-J4Px6NAtn28HC8Sb
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQIAEDhQLimxuYkFzSNE4TtvLRFtFGBQpii2r7LFWCFJWWlb-Oz0lRGRjYoih2LD1ffJd3746xU1kNZawGdR5qD3lgZMBjFQdcCukFA2tQ2jG6z516kkQvL3GvEKs7LQwiuuQzrNCl4_L1SE3pV9k5saWhk5QvUeusQq71QxoEwnULtAGG4LG1xILEtKPO-73rRxsM-qJSEyTtDH4dQ3N9Vdyx0iz9c0EbbL3wH6GRA77JFjArs9KsNwMUplpma3OFBrfYV-eet5LkAhrQogrVQDU57DRJngQO1BHtFaz_Cg95ziwCaUOgNyYeh7CDkYEuJe995B8XfmmPPw2NOf4bhhlYdxLyxdj3ApW-GmbT6ds2e2re9K_avGi9wJXvexMuFXXkwJByDW3AKIUSGuuetCastbE-i0BfG-ufkfDW1NQgjMgzi8JwoIw01doOW8xGGe4yUH5khKx5iHUdUPU4g3YfSETlVTVGco-dzZBI3_MKG6mLTLw4JdhSgi0tYNtj24TC3IM5APt_3D9hK-1-t5N2bpO7A7ZKU-W5KIdscTKe4hFbVp-T4cf42G2lb3CBx-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LQ-GNN%3A+A+Graph+Neural+Network+Model+for+Response+Time+Prediction+of+Microservice-Based+Applications+in+the+Computing+Continuum&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Richart%2C+Mat%C3%ADas&rft.au=Gorricho%2C+Juan-Luis&rft.au=Baliosian%2C+Javier&rft.au=Contreras%2C+Luis+M.&rft.date=2025-12-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=36&rft.issue=12&rft.spage=2566&rft.epage=2577&rft_id=info:doi/10.1109%2FTPDS.2025.3564214&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2025_3564214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon