LQ-GNN: A Graph Neural Network Model for Response Time Prediction of Microservice-Based Applications in the Computing Continuum
To address the challenges posed by the deployment of microservices of future end-user applications in the cloud continuum, a performance prediction model working together with a network elasticity controller will be needed. With that aim, this work introduces Layered Queuing-Graph Neural Networks (L...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on parallel and distributed systems Jg. 36; H. 12; S. 2566 - 2577 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.12.2025
|
| Schlagworte: | |
| ISSN: | 1045-9219, 1558-2183 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To address the challenges posed by the deployment of microservices of future end-user applications in the cloud continuum, a performance prediction model working together with a network elasticity controller will be needed. With that aim, this work introduces Layered Queuing-Graph Neural Networks (LQ-GNN), a novel Machine Learning (ML) approach to develop a generalized performance prediction model for microservice-based applications. Unlike previous works focused on individual applications, our proposal aims for a versatile model applicable to any microservice-based application, integrating the Layered Queueing Network (LQN) modeling with Graph Neural Networks (GNN). LQ-GNN allows to efficiently estimate the response time of applications under different resource allocations and placements on the computing continuum. The obtained evaluation results indicate that the proposed model achieves a prediction error below 10% when considering different evaluation scenarios. Compared to existing methodologies, our approach balances prediction accuracy and computational efficiency, making it viable for real-time deployments. Consequently, ML-based performance prediction can significantly enhance the resource management and elasticity control of microservice-based architectures, leading to more resilient and efficient systems. |
|---|---|
| AbstractList | To address the challenges posed by the deployment of microservices of future end-user applications in the cloud continuum, a performance prediction model working together with a network elasticity controller will be needed. With that aim, this work introduces Layered Queuing-Graph Neural Networks (LQ-GNN), a novel Machine Learning (ML) approach to develop a generalized performance prediction model for microservice-based applications. Unlike previous works focused on individual applications, our proposal aims for a versatile model applicable to any microservice-based application, integrating the Layered Queueing Network (LQN) modeling with Graph Neural Networks (GNN). LQ-GNN allows to efficiently estimate the response time of applications under different resource allocations and placements on the computing continuum. The obtained evaluation results indicate that the proposed model achieves a prediction error below 10% when considering different evaluation scenarios. Compared to existing methodologies, our approach balances prediction accuracy and computational efficiency, making it viable for real-time deployments. Consequently, ML-based performance prediction can significantly enhance the resource management and elasticity control of microservice-based architectures, leading to more resilient and efficient systems. |
| Author | Contreras, Luis M. Serrat, Joan Richart, Matias Gorricho, Juan-Luis Muniz, Alejandro Baliosian, Javier |
| Author_xml | – sequence: 1 givenname: Matias orcidid: 0000-0002-9152-3522 surname: Richart fullname: Richart, Matias email: mrichart@fing.edu.uy organization: Computer Science Department, School of Engineering, University of the Republic, Montevideo, Uruguay – sequence: 2 givenname: Juan-Luis orcidid: 0000-0002-6280-1546 surname: Gorricho fullname: Gorricho, Juan-Luis email: juan.luis.gorricho@upc.edu organization: Department of Network Engineering, Polytechnic University of Catalonia, Barcelona, Spain – sequence: 3 givenname: Javier orcidid: 0000-0003-1867-5682 surname: Baliosian fullname: Baliosian, Javier email: baliosian@fing.edu.uy organization: Computer Science Department, School of Engineering, University of the Republic, Montevideo, Uruguay – sequence: 4 givenname: Luis M. orcidid: 0000-0003-0309-5925 surname: Contreras fullname: Contreras, Luis M. email: luismiguel.contrerasmurillo@telefonica.com organization: Telefónica CTIO, Madrid, Spain – sequence: 5 givenname: Alejandro surname: Muniz fullname: Muniz, Alejandro email: alejandro.muniz@telefonica.com organization: Telefónica CTIO, Madrid, Spain – sequence: 6 givenname: Joan surname: Serrat fullname: Serrat, Joan email: juan.serrat@upc.edu organization: Department of Network Engineering, Polytechnic University of Catalonia, Barcelona, Spain |
| BookMark | eNpNkLFOwzAURS1UJErhA5AY_AMptmMnDlspUJDaUqDMUeI8U0MSR3YCYuLXSdQOTOcO9z49nVM0qm0NCF1QMqWUJFfbze3rlBEmpqGIOKP8CI2pEDJgVIajPhMugoTR5ASdev9BCOWC8DH6XT4Hi_X6Gs_wwmXNDq-hc1nZo_227hOvbAEl1tbhF_CNrT3grakAbxwURrXG1thqvDLKWQ_uyygIbjIPBZ41TWlUNjQ8NjVud4Dntmq61tTvfap7dl11ho51Vno4P3CC3u7vtvOHYPm0eJzPloFijLRBriSRFKJYypjzKBdKFBCTnAhaFFrySAArNCEJSZJYhyqLZMg4k1GUKZ1rGk4Q3d8dHvUOdNo4U2XuJ6UkHQymg8F0MJgeDPaby_3GAMC_fhJHnIrwD2nqb4U |
| CODEN | ITDSEO |
| Cites_doi | 10.21203/rs.3.rs-3925329/v1 10.1145/3580305.3599465 10.1109/MNET.001.2100266 10.1145/3297858.3304013 10.1145/3445814.3446693 10.1109/CloudNet55617.2022.9978781 10.1145/584369.584402 10.1109/TNET.2023.3269983 10.1109/TNNLS.2020.2978386 10.1109/MIC.2021.3050613 10.4108/icst.valuetools2009.7526 10.1145/1071021.1071031 10.1007/s00450-016-0337-0 10.1145/3485983.3494866 10.1145/358396.358403 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TPDS.2025.3564214 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2183 |
| EndPage | 2577 |
| ExternalDocumentID | 10_1109_TPDS_2025_3564214 10976415 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Agencia Nacional de Investigación e Innovación of Uruguay grantid: FCE_3_2024_1_180928 – fundername: Ministry of Research and Universities of the Government of Catalonia grantid: 2022-BP-00099 – fundername: Ministerio de Ciencia e Innovación of Spain grantid: PID2022-137329OB-C41/MCIN/AEI/10.13039/501100011033 |
| GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 TWZ UHB VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c220t-bc8081e67887446b5c5de70b051ddf8465e2df0090997f3ca683242866acfbf13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001596847800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9219 |
| IngestDate | Sat Nov 29 07:09:19 EST 2025 Sat Oct 25 03:09:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c220t-bc8081e67887446b5c5de70b051ddf8465e2df0090997f3ca683242866acfbf13 |
| ORCID | 0000-0003-1867-5682 0000-0002-9152-3522 0000-0002-6280-1546 0000-0003-0309-5925 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10976415 crossref_primary_10_1109_TPDS_2025_3564214 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on parallel and distributed systems |
| PublicationTitleAbbrev | TPDS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | Chapel (ref6) 2020 Fourati (ref7) 2024 Gias (ref17) ref11 Franks (ref16) 2022 ref10 ref2 (ref15) 2024 Incerto (ref18) Arfeen (ref19) 2019; 141 ref23 ref26 ref25 ref22 Franks (ref13) 2009; 35 ref28 Swoyer (ref3) 2020 ref27 ref29 ref8 Cerny (ref24) Baliosian (ref5) 2021; 59 ref9 Nguyen (ref12) 2022 ref4 Amazon (ref14) 2024 Zhang (ref20) 2019 Nguyen (ref21) 2022; 22 Swoyer (ref1) 2020 |
| References_xml | – year: 2020 ident: ref1 article-title: Cloud adoption in 2020 – start-page: 1994 volume-title: Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. ident: ref17 article-title: ATOM: Model-driven autoscaling for microservices – year: 2024 ident: ref7 article-title: Cloud elasticity of microservices-based applications: A survey doi: 10.21203/rs.3.rs-3925329/v1 – ident: ref11 doi: 10.1145/3580305.3599465 – ident: ref28 doi: 10.1109/MNET.001.2100266 – ident: ref8 doi: 10.1145/3297858.3304013 – year: 2024 ident: ref14 article-title: Application scaling - AWS auto scaling - AWS – ident: ref10 doi: 10.1145/3445814.3446693 – year: 2024 ident: ref15 article-title: Horizontal pod autoscaling – year: 2022 ident: ref12 article-title: Graph-PHPA: Graph-based proactive horizontal pod autoscaling for microservices using LSTM-GNN doi: 10.1109/CloudNet55617.2022.9978781 – ident: ref22 doi: 10.1145/584369.584402 – volume: 35 start-page: 148 issue: 2 volume-title: IEEE Trans. Softw. Eng. year: 2009 ident: ref13 article-title: Enhanced modeling and solution of layered queueing networks – start-page: 67 volume-title: Proc. IEEE Int. Conf. Autonomic Comput. Self-Organizing Syst. ident: ref18 article-title: Opt: An efficient optimal autoscaler for microservice applications – year: 2020 ident: ref3 article-title: Microservices adoption in 2020 – ident: ref26 doi: 10.1109/TNET.2023.3269983 – volume: 59 start-page: 34 issue: 10 volume-title: IEEE Commun. Mag. year: 2021 ident: ref5 article-title: An efficient algorithm for fast service edge selection in cloud-based telco networks – ident: ref27 doi: 10.1109/TNNLS.2020.2978386 – year: 2020 ident: ref6 article-title: Wasted cloud spend to exceed 17.6 billion in 2020, fueled by cloud computing growth – year: 2022 ident: ref16 article-title: Layered queueing network solver and simulator user manual – volume: 141 start-page: 1 volume-title: J. Netw. Comput. Appl. year: 2019 ident: ref19 article-title: The role of the weibull distribution in modelling traffic in internet access and backbone core networks – ident: ref2 doi: 10.1109/MIC.2021.3050613 – ident: ref25 doi: 10.4108/icst.valuetools2009.7526 – start-page: 39 volume-title: Proc. IEEE Int. Conf. Service-Oriented Syst. Eng. ident: ref24 article-title: Microservice architecture reconstruction and visualization techniques: A review – ident: ref23 doi: 10.1145/1071021.1071031 – ident: ref4 doi: 10.1007/s00450-016-0337-0 – ident: ref9 doi: 10.1145/3485983.3494866 – year: 2019 ident: ref20 article-title: uqSim: Scalable and validated simulation of cloud microservices – volume: 22 issue: 23 volume-title: Sensors year: 2022 ident: ref21 article-title: A survey on graph neural networks for microservice-based cloud applications – ident: ref29 doi: 10.1145/358396.358403 |
| SSID | ssj0014504 |
| Score | 2.4709432 |
| Snippet | To address the challenges posed by the deployment of microservices of future end-user applications in the cloud continuum, a performance prediction model... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 2566 |
| SubjectTerms | Cloud computing Computational modeling Computing continuum Elasticity Graph neural networks Machine learning Microservice architectures microservice-based applications Predictive models Quality of service Resource management Time factors |
| Title | LQ-GNN: A Graph Neural Network Model for Response Time Prediction of Microservice-Based Applications in the Computing Continuum |
| URI | https://ieeexplore.ieee.org/document/10976415 |
| Volume | 36 |
| WOSCitedRecordID | wos001596847800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2183 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014504 issn: 1045-9219 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAoxRRXrqBCcmQJnEebOU9lKg8xRbV9lmqBCnqg5W_js9OURkY2KIoTix9Pvsu3313jB3JdiJz1U95ogPksZExz1UecylkEPetQWnH6L5006LIXl_zXi1Wd1oYRHTJZ3hCl47L10M1pV9lp8SWJk5SvpimiRdr_VAGsXC9Am14IXhu7bCmMO2Y06fe5aMNBUNxEgkSdsa_DqG5riruULle_-d0Ntha7T1Cx8O9yRawarD1WWcGqA21wVbnygxusa_uPb8pijPowA3VpwaqyGFfU_gUcKB-aG9gvVd48BmzCKQMgd6IWBxCDoYG7ih1b-y3Fn5uDz8NnTn2GwYVWGcS_GTsd4EKXw2q6fS9yZ6vr54ubnndeIGrMAwmXCrqx4EJZRracFEKJTSmgbQGrLWxHovAUBvrnZHs1kSqn2Tkl2VJ0ldGmna0zZaqYYU7DFSYGSGjADHVMdWOM2hXgURUQVtjJlvseIZE-eHra5QuLgnykmArCbayhq3FmoTC3IMegN0_7u-xFRrus0_22dJkNMUDtqw-J4Px6NAtn28HC8Sb |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQIAEDhQLimxuYkFzSNE4TtvLRFtFGBQpii2r7LFWCFJWWlb-Oz0lRGRjYoih2LD1ffJd3746xU1kNZawGdR5qD3lgZMBjFQdcCukFA2tQ2jG6z516kkQvL3GvEKs7LQwiuuQzrNCl4_L1SE3pV9k5saWhk5QvUeusQq71QxoEwnULtAGG4LG1xILEtKPO-73rRxsM-qJSEyTtDH4dQ3N9Vdyx0iz9c0EbbL3wH6GRA77JFjArs9KsNwMUplpma3OFBrfYV-eet5LkAhrQogrVQDU57DRJngQO1BHtFaz_Cg95ziwCaUOgNyYeh7CDkYEuJe995B8XfmmPPw2NOf4bhhlYdxLyxdj3ApW-GmbT6ds2e2re9K_avGi9wJXvexMuFXXkwJByDW3AKIUSGuuetCastbE-i0BfG-ufkfDW1NQgjMgzi8JwoIw01doOW8xGGe4yUH5khKx5iHUdUPU4g3YfSETlVTVGco-dzZBI3_MKG6mLTLw4JdhSgi0tYNtj24TC3IM5APt_3D9hK-1-t5N2bpO7A7ZKU-W5KIdscTKe4hFbVp-T4cf42G2lb3CBx-Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LQ-GNN%3A+A+Graph+Neural+Network+Model+for+Response+Time+Prediction+of+Microservice-Based+Applications+in+the+Computing+Continuum&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Richart%2C+Mat%C3%ADas&rft.au=Gorricho%2C+Juan-Luis&rft.au=Baliosian%2C+Javier&rft.au=Contreras%2C+Luis+M.&rft.date=2025-12-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=36&rft.issue=12&rft.spage=2566&rft.epage=2577&rft_id=info:doi/10.1109%2FTPDS.2025.3564214&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2025_3564214 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |