Intra-Trajectory Error Balancing and Inter-Trajectory Feature Point Clustering for Trajectory Compression
The widespread use of locatable devices leads to a sharp increase in the storage of trajectory data, and redundant storage of similar trajectories wastes a large amount of storage resources. The state-of-the-art multiple trajectory compression algorithms are developed to strip the partial informatio...
Uložené v:
| Vydané v: | IEEE transactions on knowledge and data engineering Ročník 37; číslo 9; s. 5330 - 5345 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.09.2025
|
| Predmet: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The widespread use of locatable devices leads to a sharp increase in the storage of trajectory data, and redundant storage of similar trajectories wastes a large amount of storage resources. The state-of-the-art multiple trajectory compression algorithms are developed to strip the partial information of trajectory; however, these algorithms have low compression efficiency because they do not eliminate the redundancy within a single trajectory as much as possible, as well as high time overhead due to matching of reference sub-trajectories. In this study, we propose a new spatio-temporal trajectory compression technique, consisting of intra-trajectory error balancing and inter-trajectory feature point clustering . Intra-trajectory error balancing is achieved through retaining high score (an aggregated metric) trajectory points (i.e., feature points). Furthermore, inter-trajectory feature point clustering realizes the fusion of similar trajectories and extracts the commonality between trajectories. Experiments are performed on five real trajectory datasets, including two road datasets, one airline dataset, and one walking dataset. Compared with the state-of-the-art methods, our compression technique improves the compression ratio by an average of 24.9% under the same error, and reduces the time overhead by at least an order of magnitude. |
|---|---|
| AbstractList | The widespread use of locatable devices leads to a sharp increase in the storage of trajectory data, and redundant storage of similar trajectories wastes a large amount of storage resources. The state-of-the-art multiple trajectory compression algorithms are developed to strip the partial information of trajectory; however, these algorithms have low compression efficiency because they do not eliminate the redundancy within a single trajectory as much as possible, as well as high time overhead due to matching of reference sub-trajectories. In this study, we propose a new spatio-temporal trajectory compression technique, consisting of intra-trajectory error balancing and inter-trajectory feature point clustering . Intra-trajectory error balancing is achieved through retaining high score (an aggregated metric) trajectory points (i.e., feature points). Furthermore, inter-trajectory feature point clustering realizes the fusion of similar trajectories and extracts the commonality between trajectories. Experiments are performed on five real trajectory datasets, including two road datasets, one airline dataset, and one walking dataset. Compared with the state-of-the-art methods, our compression technique improves the compression ratio by an average of 24.9% under the same error, and reduces the time overhead by at least an order of magnitude. |
| Author | Cheng, Xin Xie, Guoqi Yang, Lei Li, Rui Liao, Yuwei |
| Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0002-1765-7741 surname: Yang fullname: Yang, Lei email: jt_yl@hnu.edu.cn organization: School of Information Science and Engineering, Hunan University, Changsha, China – sequence: 2 givenname: Xin orcidid: 0009-0007-2874-7746 surname: Cheng fullname: Cheng, Xin email: chengxin@hnu.edu.cn organization: School of Information Science and Engineering, Hunan University, Changsha, China – sequence: 3 givenname: Yuwei orcidid: 0000-0001-8248-0359 surname: Liao fullname: Liao, Yuwei email: liaoyuwei23@hnu.edu.cn organization: School of Information Science and Engineering, Hunan University, Changsha, China – sequence: 4 givenname: Rui orcidid: 0000-0001-5899-603X surname: Li fullname: Li, Rui email: rui@hnu.edu.cn organization: School of Information Science and Engineering, Hunan University, Changsha, China – sequence: 5 givenname: Guoqi orcidid: 0000-0001-6625-0350 surname: Xie fullname: Xie, Guoqi email: xgqman@hnu.edu.cn organization: School of Information Science and Engineering, Hunan University, Changsha, China |
| BookMark | eNpNkE1PAjEQQBuDiYD-ABMP-wcWp9_LUVdQIoke8Lxpu61ZAi1plwP_3m4gkdNMJu_N4U3QyAdvEXrEMMMY5s-bz7fFjADhM8rlnFF2g8aY86okeI5HeQeGy3yWd2iS0hYAKlnhMepWvo-q3ES1taYP8VQsYgyxeFU75U3nfwvl2yJDNl5DS6v6Y7TFd-h8X9S7Y8rAQLvsXnF12B-iTakL_h7dOrVL9uEyp-hnudjUH-X6631Vv6xLQwj0pXKtFIJqq8BUUrSYGJDOKs2o0JWknBmsSesARKUN10IyzlqrjNOCGSPpFOHzXxNDStG65hC7vYqnBkMztGqGVs3Qqrm0ys7T2emstf88hhyMEvoHHHdqSw |
| CODEN | ITKEEH |
| Cites_doi | 10.1155/2016/6587309 10.1016/j.trc.2022.103856 10.14778/3450980.3450987 10.1155/2021/6674769 10.1177/15501477211050729 10.1007/978-3-540-24741-8_44 10.1109/TKDE.2016.2598171 10.1007/s11704-017-6325-0 10.3138/FM57-6770-U75U-7727 10.1155/2022/8696558 10.1109/ICITBE54178.2021.00049 10.1109/ICDE.2015.7113350 10.14778/2735461.2735466 10.1145/3219819.3220030 10.1145/1140104.1140110 10.1109/SSDBM.2006.45 10.14778/2536206.2536221 10.1109/TKDE.2015.2436932 10.1016/j.oceaneng.2022.111207 10.1109/COMGEO.2013.15 10.14778/3213880.3213885 10.1145/3474373 10.1109/TKDE.2019.2914449 10.1109/DSAA54385.2022.10032330 10.1109/MDM52706.2021.00033 10.1007/11833529_64 10.1016/S0146-664X(72)80017-0 10.1109/ACCESS.2016.2553681 10.14778/3384345.3384353 10.1017/S0373463324000171 10.1016/j.eswa.2009.03.017 10.1016/j.pmcj.2010.08.004 10.1109/ICDE.2010.5447829 10.1016/j.oceaneng.2023.114930 10.3390/ijgi11040244 10.1145/1999320.1999333 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TKDE.2025.3579434 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 5345 |
| ExternalDocumentID | 10_1109_TKDE_2025_3579434 11034732 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62372167 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Hainan Province; Natural Science Foundation of Hunan Province of China grantid: 2024JJ5097 funderid: 10.13039/501100004761 |
| GroupedDBID | -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TAF TN5 UHB VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c220t-afd7663bea0c876d12c07feab436b87354c1b2df0068bc5b67454deacfb64cc73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001547502000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sat Nov 29 07:37:47 EST 2025 Sun Sep 28 03:48:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c220t-afd7663bea0c876d12c07feab436b87354c1b2df0068bc5b67454deacfb64cc73 |
| ORCID | 0009-0007-2874-7746 0000-0001-5899-603X 0000-0002-1765-7741 0000-0001-8248-0359 0000-0001-6625-0350 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TKDE_2025_3579434 ieee_primary_11034732 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 ref8 Berndt (ref38) ref7 ref9 ref4 ref3 ref6 Hershberger (ref20) 1992 ref5 |
| References_xml | – ident: ref14 doi: 10.1155/2016/6587309 – ident: ref23 doi: 10.1016/j.trc.2022.103856 – ident: ref32 doi: 10.14778/3450980.3450987 – ident: ref5 doi: 10.1155/2021/6674769 – ident: ref7 doi: 10.1177/15501477211050729 – ident: ref9 doi: 10.1007/978-3-540-24741-8_44 – ident: ref28 doi: 10.1109/TKDE.2016.2598171 – ident: ref37 doi: 10.1007/s11704-017-6325-0 – ident: ref8 doi: 10.3138/FM57-6770-U75U-7727 – ident: ref25 doi: 10.1155/2022/8696558 – ident: ref6 doi: 10.1109/ICITBE54178.2021.00049 – ident: ref27 doi: 10.1109/ICDE.2015.7113350 – ident: ref12 doi: 10.14778/2735461.2735466 – ident: ref17 doi: 10.1145/3219819.3220030 – ident: ref26 doi: 10.1145/1140104.1140110 – ident: ref10 doi: 10.1109/SSDBM.2006.45 – ident: ref33 doi: 10.14778/2536206.2536221 – ident: ref34 doi: 10.1109/TKDE.2015.2436932 – ident: ref31 doi: 10.1016/j.oceaneng.2022.111207 – ident: ref16 doi: 10.1109/COMGEO.2013.15 – ident: ref36 doi: 10.14778/3213880.3213885 – ident: ref13 doi: 10.1145/3474373 – ident: ref18 doi: 10.1109/TKDE.2019.2914449 – ident: ref35 doi: 10.1109/DSAA54385.2022.10032330 – ident: ref22 doi: 10.1109/MDM52706.2021.00033 – ident: ref1 doi: 10.1007/11833529_64 – ident: ref19 doi: 10.1016/S0146-664X(72)80017-0 – volume-title: Speeding Up the Douglas-Peucker Line-Simplification Algorithm year: 1992 ident: ref20 – ident: ref4 doi: 10.1109/ACCESS.2016.2553681 – ident: ref21 doi: 10.14778/3384345.3384353 – ident: ref29 doi: 10.1017/S0373463324000171 – ident: ref2 doi: 10.1016/j.eswa.2009.03.017 – ident: ref3 doi: 10.1016/j.pmcj.2010.08.004 – ident: ref15 doi: 10.1109/ICDE.2010.5447829 – start-page: 359 volume-title: Proc. 3rd Int. Conf. Knowl. Discov. Data Mining ident: ref38 article-title: Using dynamic time warping to find patterns in time series – ident: ref24 doi: 10.1016/j.oceaneng.2023.114930 – ident: ref30 doi: 10.3390/ijgi11040244 – ident: ref11 doi: 10.1145/1999320.1999333 |
| SSID | ssj0008781 |
| Score | 2.4768586 |
| Snippet | The widespread use of locatable devices leads to a sharp increase in the storage of trajectory data, and redundant storage of similar trajectories wastes a... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 5330 |
| SubjectTerms | Clustering algorithms Compression algorithm Costs Data mining Feature extraction Global Positioning System Measurement Redundancy Roads similar trajectory spatio-temporal data Training Trajectory |
| Title | Intra-Trajectory Error Balancing and Inter-Trajectory Feature Point Clustering for Trajectory Compression |
| URI | https://ieeexplore.ieee.org/document/11034732 |
| Volume | 37 |
| WOSCitedRecordID | wos001547502000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA86POjB6Zw4X-TgSciWNq_u6GNDEcYOE3YrzQsm0kptBf97k7TTefDgrYRfSfm-9HvlewBwRWwSMWso0oobRAUzKGORRpZSQi3PqMQ6DJsQs1myXI7nbbF6qIUxxoTkMzP0j-EuXxeq9qGykVNVhAriJO62EKIp1voWu4kIE0mde-GcIgdrrzAjPB4tnu4nzhWM2ZCw0BDtlxLamKoSlMq0-8_POQD7rfUIbxp2H4Itk_dAdz2ZAbY_ag_sbbQZPAKrRx_BRU4tvYQY_SeclGVRwluf1qgcBGa5hiE2uAny1mFdGjgvVnkF715r31PBo52dCzdwfvsmmzbvg-fpZHH3gNoRC0jFMa5QZrVwNoc0GVZOLuooVlhYk0lKuEwEYVRFMtbWV5JIxSQXlFHthLWVnColyDHo5EVuTgCMOJYq1onmXFLO4ySzNHEqWHEthMRsAK7XNE_fmk4aafBA8Dj1DEo9g9KWQQPQ9_T-AbakPv1j_Qzs-teb5K9z0KnK2lyAHfVRrd7Ly3BQvgBXXb5r |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB6kCurBalWs6xw8CdNmmSU9am1paS09VOgtZDaoSCIxEfz3zkxSrQcP3sLwkQnvTd42bwHgNtSRT7TCSAqqEGZEoYT4EmmMQ6xpgrkn3bAJNptFy2VvXheru1oYpZRLPlMd--ju8mUmShsq6xpVFWIWGom7TTAO_Kpc61vwRszNJDUOhnGLDLC-xPS9XncxeRwYZzAgnZC4lmi_1NDGXBWnVobNf37QITio7Ud4XzH8CGyptAWa69kMsP5VW2B_o9HgMViNbQwXGcX04qL0n3CQ51kOH2xiozAQmKQSuujgJsjah2Wu4DxbpQXsv5a2q4JFG0sXbuDs9lU-bXoCnoeDRX-E6iELSASBV6BES2asDq4STxjJKP1AeEyrhOOQ8oiFBAufB1LbWhIuCKcMEyyNuNacYiFYeAoaaZaqMwB96nERyEhSyjGlQZRoHBklLKhkjHukDe7WNI_fql4asfNBvF5sGRRbBsU1g9rgxNL7B1iT-vyP9RuwO1o8TePpeDa5AHv2VVUq2CVoFHmprsCO-ChW7_m1OzRfaObBsg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intra-Trajectory+Error+Balancing+and+Inter-Trajectory+Feature+Point+Clustering+for+Trajectory+Compression&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Yang%2C+Lei&rft.au=Cheng%2C+Xin&rft.au=Liao%2C+Yuwei&rft.au=Li%2C+Rui&rft.date=2025-09-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=37&rft.issue=9&rft.spage=5330&rft.epage=5345&rft_id=info:doi/10.1109%2FTKDE.2025.3579434&rft.externalDocID=11034732 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |