Learning-Aided Evolutionary Algorithm for Solving Energy-Minimized Deadline-Constrained Task Scheduling Problem in Human-Cyber-Physical Systems

This work addresses an energy-minimized deadline-constrained task scheduling problem in human-cyber-physical systems. It consists of three subproblems: processor allocation, task sequencing, and processor frequency scaling. A Learning-aided Evolutionary Algorithm (LEA) is proposed to efficiently fin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automation science and engineering Ročník 22; s. 22729 - 22741
Hlavní autori: Cao, ZhengCai, Zhou, HaoRan, Lin, ChengRan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:1545-5955, 1558-3783
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This work addresses an energy-minimized deadline-constrained task scheduling problem in human-cyber-physical systems. It consists of three subproblems: processor allocation, task sequencing, and processor frequency scaling. A Learning-aided Evolutionary Algorithm (LEA) is proposed to efficiently find its reliable and high-quality solutions. It incorporates a bidirectional long short-term memory network-embedded autoencoder trained via end-to-end self-supervised learning. The model extracts the interconnections among the three strongly-coupled subproblems, enabling effective global search in a low-dimensional feature space. A parallel framework with two co-evolved subpopulations, one using the autoencoder and another undergoing regular evaluation in the original search space, is constructed. To balance LEA's exploration and exploitation, a deep reinforcement learning-based search operator selection scheme is introduced, using a novel feedback-based reward function to guide operator selection for each subpopulation. Numerical experiments demonstrate that LEA surpasses several recently developed methods in finding high-quality schedules in a reasonable time. Note to Practitioners-In a human-cyber-physical system, heuristics are commonly used to solve task scheduling problems. However, fast dispatching rules tend to perform poorly. Evolutionary algorithms can identify relatively high-quality schedules but are highly time-consuming, especially for population-based methods that iteratively evaluate fitness functions. To balance computational burden and solution quality, our idea is to combine two machine learning methods with evolutionary algorithms. First, a self-supervised autoencoder enhances global search capability by reducing the complexity of the search space. Second, a deep reinforcement learning-based operator selection scheme balances exploration and exploitation. This hybrid approach enables engineers to find high-quality schedules for the considered problems in a short time. Theoretical analysis and experimental results demonstrate that our proposed method outperforms its competitive peers.
AbstractList This work addresses an energy-minimized deadline-constrained task scheduling problem in human-cyber-physical systems. It consists of three subproblems: processor allocation, task sequencing, and processor frequency scaling. A Learning-aided Evolutionary Algorithm (LEA) is proposed to efficiently find its reliable and high-quality solutions. It incorporates a bidirectional long short-term memory network-embedded autoencoder trained via end-to-end self-supervised learning. The model extracts the interconnections among the three strongly-coupled subproblems, enabling effective global search in a low-dimensional feature space. A parallel framework with two co-evolved subpopulations, one using the autoencoder and another undergoing regular evaluation in the original search space, is constructed. To balance LEA's exploration and exploitation, a deep reinforcement learning-based search operator selection scheme is introduced, using a novel feedback-based reward function to guide operator selection for each subpopulation. Numerical experiments demonstrate that LEA surpasses several recently developed methods in finding high-quality schedules in a reasonable time. Note to Practitioners-In a human-cyber-physical system, heuristics are commonly used to solve task scheduling problems. However, fast dispatching rules tend to perform poorly. Evolutionary algorithms can identify relatively high-quality schedules but are highly time-consuming, especially for population-based methods that iteratively evaluate fitness functions. To balance computational burden and solution quality, our idea is to combine two machine learning methods with evolutionary algorithms. First, a self-supervised autoencoder enhances global search capability by reducing the complexity of the search space. Second, a deep reinforcement learning-based operator selection scheme balances exploration and exploitation. This hybrid approach enables engineers to find high-quality schedules for the considered problems in a short time. Theoretical analysis and experimental results demonstrate that our proposed method outperforms its competitive peers.
Author Lin, ChengRan
Cao, ZhengCai
Zhou, HaoRan
Author_xml – sequence: 1
  givenname: ZhengCai
  orcidid: 0000-0003-0344-0207
  surname: Cao
  fullname: Cao, ZhengCai
  email: giftczc@163.com
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 2
  givenname: HaoRan
  orcidid: 0009-0003-2869-7794
  surname: Zhou
  fullname: Zhou, HaoRan
  email: zhr530629@163.com
  organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
– sequence: 3
  givenname: ChengRan
  orcidid: 0000-0001-9924-4408
  surname: Lin
  fullname: Lin, ChengRan
  email: chranlin@163.com
  organization: State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, China
BookMark eNpFkN1OwjAYhhuDiYBegIkHvYFif-hYDwmimGAkAY-Xbv0G1a017SCZN-EtuwUSj7734H3e5HtGaOC8A4TuGZ0wRtXjbr5dTjjlciISxhIur9CQSZkSMUvFoM9TSaSS8gaNYvyklE9TRYfodw06OOv2ZG4NGLw8-erYWO90aPG82vtgm0ONSx_w1lenroiXDsK-JW_W2dr-dMwTaFNZB2ThXWyC7qLBOx2_8LY4gDlWPbUJPq-gxtbh1bHWjizaHALZHNpoC13hbRsbqOMtui51FeHucsfo43m5W6zI-v3ldTFfk4Jz2pCZKRnkCTWgytSoaQEyF1AWJmGJ5rmacapTECmnUjKm0kIzmZQmV32QTIkxYufdIvgYA5TZd7B193TGaNYbzXqjWW80uxjtmIczYwHgv8_YTHCRij9FfXe1
CODEN ITASC7
Cites_doi 10.1109/TASE.2021.3129439
10.1109/TSMC.2024.3352522
10.1109/MRA.2023.3265515
10.23919/CSMS.2021.0027
10.1109/TCC.2018.2889482
10.1109/TASE.2020.3047924
10.1109/TNN.2004.842673
10.1109/TASE.2024.3360476
10.1109/tevc.2024.3415368
10.1109/TIE.2021.3135629
10.1109/ICNSC48988.2020.9238110
10.1109/TCYB.2022.3222101
10.1109/TASE.2020.3042409
10.1109/TMM.2020.3047552
10.1109/TASE.2022.3178126
10.1109/TASE.2020.2978917
10.1002/spe.2876
10.1109/TEVC.2021.3113923
10.1109/TPDS.2017.2730876
10.1007/s12599-019-00590-7
10.1109/TIM.2022.3152856
10.1109/TEVC.2013.2248012
10.1109/JAS.2022.105425
10.1109/TASE.2023.3267714
10.1109/TSMC.2022.3195239
10.1109/tevc.2023.3278132
10.1109/71.993206
10.1109/TASE.2019.2909866
10.1109/TCYB.2021.3065340
10.1109/TASE.2018.2862380
10.1109/TCSS.2020.3029569
10.1109/TASE.2019.2945717
10.1109/TMECH.2020.2996911
10.1109/ACCESS.2021.3058328
10.1109/MWC.01.1900543
10.1109/TEVC.2022.3232776
10.1109/TASE.2019.2953669
10.1016/j.jii.2019.08.002
10.1109/TASE.2025.3562191
10.1007/s40747-021-00288-y
10.1109/TEVC.2022.3194349
10.1038/s41551-020-00635-3
10.1109/TASE.2020.3046673
10.1109/TASE.2024.3486919
10.1109/TASE.2022.3200073
10.1109/TCYB.2024.3413054
10.1109/TASE.2024.3477982
10.1016/j.ejor.2015.06.023
10.1109/TCYB.2022.3210228
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2025.3611625
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 22741
ExternalDocumentID 10_1109_TASE_2025_3611625
11173238
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; Joint Funds of the National Natural Science Foundation of China
  grantid: 62561160096
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 52175002; 52305523
  funderid: 10.13039/501100001809
– fundername: Beijing Natural Science Foundation
  grantid: L243017
– fundername: Aeronautical Science Foundation of China
  grantid: 2024M071077001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-7df1eb60de9f8d94ce5b3efcd616a2b9720a8e3820551198ca156fdb9ca155193
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001605059200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sat Nov 29 06:58:13 EST 2025
Wed Nov 19 08:27:07 EST 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-7df1eb60de9f8d94ce5b3efcd616a2b9720a8e3820551198ca156fdb9ca155193
ORCID 0000-0003-0344-0207
0009-0003-2869-7794
0000-0001-9924-4408
PageCount 13
ParticipantIDs ieee_primary_11173238
crossref_primary_10_1109_TASE_2025_3611625
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
Srivastava (ref46); 37
ref27
ref29
References_xml – ident: ref49
  doi: 10.1109/TASE.2021.3129439
– ident: ref38
  doi: 10.1109/TSMC.2024.3352522
– volume: 37
  start-page: 843
  volume-title: Proc. 32nd Int. Conf. Int. Conf. Mach. Learn.
  ident: ref46
  article-title: Unsupervised learning of video representations using LSTMs
– ident: ref43
  doi: 10.1109/MRA.2023.3265515
– ident: ref14
  doi: 10.23919/CSMS.2021.0027
– ident: ref32
  doi: 10.1109/TCC.2018.2889482
– ident: ref19
  doi: 10.1109/TASE.2020.3047924
– ident: ref47
  doi: 10.1109/TNN.2004.842673
– ident: ref3
  doi: 10.1109/TASE.2024.3360476
– ident: ref35
  doi: 10.1109/tevc.2024.3415368
– ident: ref24
  doi: 10.1109/TIE.2021.3135629
– ident: ref1
  doi: 10.1109/ICNSC48988.2020.9238110
– ident: ref34
  doi: 10.1109/TCYB.2022.3222101
– ident: ref10
  doi: 10.1109/TASE.2020.3042409
– ident: ref22
  doi: 10.1109/TMM.2020.3047552
– ident: ref18
  doi: 10.1109/TASE.2022.3178126
– ident: ref5
  doi: 10.1109/TASE.2020.2978917
– ident: ref23
  doi: 10.1002/spe.2876
– ident: ref26
  doi: 10.1109/TEVC.2021.3113923
– ident: ref30
  doi: 10.1109/TPDS.2017.2730876
– ident: ref48
  doi: 10.1007/s12599-019-00590-7
– ident: ref44
  doi: 10.1109/TIM.2022.3152856
– ident: ref21
  doi: 10.1109/TEVC.2013.2248012
– ident: ref25
  doi: 10.1109/JAS.2022.105425
– ident: ref6
  doi: 10.1109/TASE.2023.3267714
– ident: ref9
  doi: 10.1109/TSMC.2022.3195239
– ident: ref12
  doi: 10.1109/tevc.2023.3278132
– ident: ref29
  doi: 10.1109/71.993206
– ident: ref33
  doi: 10.1109/TASE.2019.2909866
– ident: ref13
  doi: 10.1109/TCYB.2021.3065340
– ident: ref39
  doi: 10.1109/TASE.2018.2862380
– ident: ref2
  doi: 10.1109/TCSS.2020.3029569
– ident: ref41
  doi: 10.1109/TASE.2019.2945717
– ident: ref17
  doi: 10.1109/TMECH.2020.2996911
– ident: ref16
  doi: 10.1109/ACCESS.2021.3058328
– ident: ref4
  doi: 10.1109/MWC.01.1900543
– ident: ref28
  doi: 10.1109/TEVC.2022.3232776
– ident: ref8
  doi: 10.1109/TASE.2019.2953669
– ident: ref15
  doi: 10.1016/j.jii.2019.08.002
– ident: ref36
  doi: 10.1109/TASE.2025.3562191
– ident: ref42
  doi: 10.1007/s40747-021-00288-y
– ident: ref11
  doi: 10.1109/TEVC.2022.3194349
– ident: ref20
  doi: 10.1038/s41551-020-00635-3
– ident: ref31
  doi: 10.1109/TASE.2020.3046673
– ident: ref37
  doi: 10.1109/TASE.2024.3486919
– ident: ref45
  doi: 10.1109/TASE.2022.3200073
– ident: ref27
  doi: 10.1109/TCYB.2024.3413054
– ident: ref40
  doi: 10.1109/TASE.2024.3477982
– ident: ref7
  doi: 10.1016/j.ejor.2015.06.023
– ident: ref50
  doi: 10.1109/TCYB.2022.3210228
SSID ssj0024890
Score 2.3892753
Snippet This work addresses an energy-minimized deadline-constrained task scheduling problem in human-cyber-physical systems. It consists of three subproblems:...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 22729
SubjectTerms autoencoder
Autoencoders
evolutionary algorithm
Evolutionary computation
human-cyber-physical systems
Job shop scheduling
Machine learning
Optimization
Processor scheduling
Radio spectrum management
Resource management
Schedules
Sequential analysis
Task scheduling
Title Learning-Aided Evolutionary Algorithm for Solving Energy-Minimized Deadline-Constrained Task Scheduling Problem in Human-Cyber-Physical Systems
URI https://ieeexplore.ieee.org/document/11173238
Volume 22
WOSCitedRecordID wos001605059200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEA0qHvTgt_hNDp6EaJs2bXJcdMWDysKu4q0kzWQtrl2p68L6J_zLJmnEvXjwFkICJS9l3sxk5iF0qlJOhTWtRKaGWQdFCMKt3SM0VsYkiRTMV3g_3ub39_zpSfRCsbqvhQEA__gMzt3Q5_L1uPxwobIL-1_mibUxi2gxz7O2WOu3sR73ARVHCQgTjIUUZhyJi0Gn37WuIGXnSRbHmZPFnjNCc6oq3qhcr__zczbQWmCPuNPCvYkWoN5Cq3M9BbfRV-iYOiSdSoPG3Wm4XLKZ4c5oOG6qyfMrtlwV98cjF07AXV__R-6qunqtPu2eKwu8o5_EyXl6EQk7OZDvL7hvMdbu8foQ91opGlzV2GcCyOVMQUN6AXgceqHvoIfr7uDyhgTVBVJSGk1Irk0MKos0CMO1SEtgKgFT6izOJFUip5HkkFjmwFwOkpfSuoBGK-EGjg_uoqV6XMMewjRJDE9VZnIOqY6YzGJJBaSxlCovOeyjsx8Yire2uUbhnZJIFA6zwmFWBMz20Y6D4HdhOP2DP-YP0Yrb3oZLjtDSpPmAY7RcTifVe3Pi7843GVLEOw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZ4SSwHWF7ivT5wQjIkTpzYxwqKQJSqUrsrbpEdj0sEpKtQkNg_wV9e2zGiFw7cLCuxrHyO5psZz3wIHauUU2FNK5GpYdZBEYJwa_cIjZUxSSIF8xXef3p5v8_v7sQgFKv7WhgA8JfP4NQNfS5fT8oXFyo7s_9lnlgbM48WWZrSqC3X-mytx31IxZECwgRjIYkZR-Js1Bl2rTNI2WmSxXHmhLFnzNCMroo3K5dr39zQT7Qa-CPutICvozmoN9DKTFfBTfQeeqaOSafSoHH3NRwv2bzhzuN40lTT-yds2SoeTh5dQAF3fQUgua3q6qn6Z9-5sNA7AkqcoKeXkbCTI_n8gIcWZe2ur4_xoBWjwVWNfS6AnL8paMggQI9DN_Qt9PuyOzq_IkF3gZSURlOSaxODyiINwnAt0hKYSsCUOoszSZXIaSQ5JJY7MJeF5KW0TqDRSriBY4TbaKGe1LCDME0Sw1OVmZxDqiMms1hSAWkspcpLDrvo5AOG4m_bXqPwbkkkCodZ4TArAma7aMtB8Plg-Pp7X8z_QstXo9te0bvu3-yjH26pNnhygBamzQscoqXydVo9N0f-HP0HdWDHgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-Aided+Evolutionary+Algorithm+for+Solving+Energy-Minimized+Deadline-Constrained+Task+Scheduling+Problem+in+Human-Cyber-Physical+Systems&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Cao%2C+ZhengCai&rft.au=Zhou%2C+HaoRan&rft.au=Lin%2C+ChengRan&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=22729&rft.epage=22741&rft_id=info:doi/10.1109%2FTASE.2025.3611625&rft.externalDocID=11173238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon