Lane Detection on Rainy Nights Based on Memory and Discretization Mechanisms
The reflections of multi-colored lights involved on rainy nights present strong uncertainties and abruptness, resulting in a high rate of false and missed detections in existing methods. To solve this issue, this paper proposes a lane detection method based on memory and discretization mechanisms. F...
Uložené v:
| Vydané v: | IEEE transactions on intelligent transportation systems Ročník 26; číslo 7; s. 9529 - 9541 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.07.2025
|
| Predmet: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The reflections of multi-colored lights involved on rainy nights present strong uncertainties and abruptness, resulting in a high rate of false and missed detections in existing methods. To solve this issue, this paper proposes a lane detection method based on memory and discretization mechanisms. Firstly, a Memory Fruit-fly-optimizer with Individual Differences (MFID) is innovatively proposed to drive Multi-threshold Otsu (MOtsu)-based multi-class segmentation of lanes, which is a high-dimensional optimization task with real-time and local optimal challenges, for capturing lane clues obscured in multi-intensity reflections, consequently reducing missed detections. Specifically, to solve the challenges inherent in the task, the MFID incorporates a novel memory mechanism to establish fast-converging initial conditions for real-time detection, while creatively considering individual differences to motivate multi-swarm optimization that mitigates local optima risks. After integration, the MFID-MOtsu is constructed for lane segmentation. Subsequently, a dynamic discretization mechanism is proposed to efficiently separate lane edges from interference edges, mitigating accuracy degradation caused by their entanglement. Finally, the false detection issue is greatly reduced through the implementation of adaptive geometric filters. The experimental results demonstrate that the proposed method achieves an average accuracy of 93.21% on rainy nights, indicating an average improvement of 12.7% over state-of-the-art methods. Additionally, without any parameter modifications, the proposed method is applicable to both normal and classic challenging scenes, such as nights, tunnels, rainy days, and shadows. The algorithm achieves an average accuracy of 96.2% and an average detection speed of 46 frames per second. |
|---|---|
| AbstractList | The reflections of multi-colored lights involved on rainy nights present strong uncertainties and abruptness, resulting in a high rate of false and missed detections in existing methods. To solve this issue, this paper proposes a lane detection method based on memory and discretization mechanisms. Firstly, a Memory Fruit-fly-optimizer with Individual Differences (MFID) is innovatively proposed to drive Multi-threshold Otsu (MOtsu)-based multi-class segmentation of lanes, which is a high-dimensional optimization task with real-time and local optimal challenges, for capturing lane clues obscured in multi-intensity reflections, consequently reducing missed detections. Specifically, to solve the challenges inherent in the task, the MFID incorporates a novel memory mechanism to establish fast-converging initial conditions for real-time detection, while creatively considering individual differences to motivate multi-swarm optimization that mitigates local optima risks. After integration, the MFID-MOtsu is constructed for lane segmentation. Subsequently, a dynamic discretization mechanism is proposed to efficiently separate lane edges from interference edges, mitigating accuracy degradation caused by their entanglement. Finally, the false detection issue is greatly reduced through the implementation of adaptive geometric filters. The experimental results demonstrate that the proposed method achieves an average accuracy of 93.21% on rainy nights, indicating an average improvement of 12.7% over state-of-the-art methods. Additionally, without any parameter modifications, the proposed method is applicable to both normal and classic challenging scenes, such as nights, tunnels, rainy days, and shadows. The algorithm achieves an average accuracy of 96.2% and an average detection speed of 46 frames per second. |
| Author | Wang, Yifei Du, Kai Wang, Chang Ren, Miao Zhao, Jikang Li, Yonghang Niu, Jin |
| Author_xml | – sequence: 1 givenname: Yonghang orcidid: 0009-0009-9372-3032 surname: Li fullname: Li, Yonghang email: yonghangli@chd.edu.cn organization: School of Automobile, Chang'an University, Xi'an, Shaanxi, China – sequence: 2 givenname: Chang orcidid: 0000-0003-3531-1215 surname: Wang fullname: Wang, Chang email: wangchang@chd.edu.cn organization: School of Automobile, Chang'an University, Xi'an, Shaanxi, China – sequence: 3 givenname: Yifei surname: Wang fullname: Wang, Yifei email: wangyifei202208@126.com organization: School of Automobile, Chang'an University, Xi'an, Shaanxi, China – sequence: 4 givenname: Miao surname: Ren fullname: Ren, Miao email: renmiao@chd.edu.cn organization: School of Automobile, Chang'an University, Xi'an, Shaanxi, China – sequence: 5 givenname: Jin surname: Niu fullname: Niu, Jin email: niujin0310@163.com organization: School of Automobile, Chang'an University, Xi'an, Shaanxi, China – sequence: 6 givenname: Jikang surname: Zhao fullname: Zhao, Jikang email: zhaojikang@chd.edu.cn organization: School of Automobile, Chang'an University, Xi'an, Shaanxi, China – sequence: 7 givenname: Kai surname: Du fullname: Du, Kai email: dukai@chd.edu.cn organization: School of Electronics and Control Engineering, Chang'an University, Xi'an, China |
| BookMark | eNpFkN1Kw0AQRhepYFt9AMGLvEDqzP4k2UttrRZSBa3XYXczsSt2I9nc1Ke3sQVhYIaP78zFmbBRaAMxdo0wQwR9u1lt3mYcuJoJlcs8E2dsjEoVKQBmo-HmMtWg4IJNYvw8pFIhjllZmkDJgnpyvW9DcphX48M-efYf2z4m9yZSPaRr2rXdPjGhThY-uo56_2P-kDW5rQk-7uIlO2_MV6Sr056y9-XDZv6Uli-Pq_ldmTrOoU_zPC-EdQbQFlwayKyobYOF4liLGkSjrS5yLZoMnQTJrbZSWFUraDKjUIkpw-Nf17UxdtRU353fmW5fIVSDjmrQUQ06qpOOA3NzZDwR_fcRuM4EF79IdF0k |
| CODEN | ITISFG |
| Cites_doi | 10.1145/2522968.2522970 10.1109/TITS.2023.3321384 10.1007/s10462-023-10451-1 10.1109/tmech.2021.3064816 10.3390/s23020789 10.1109/TSMC.2016.2616347 10.1109/tits.2017.2751746 10.1109/tits.2020.2989129 10.1109/TSMC.2022.3219380 10.1109/CVPR52688.2022.00097 10.1016/j.neucom.2021.08.105 10.1109/tits.2015.2464253 10.1109/jas.2023.123183 10.1109/TASE.2021.3129439 10.1007/s11042-021-10978-x 10.1016/j.patcog.2015.12.010 10.1609/aaai.v38i2.27860 10.1109/tits.2023.3289165 10.1109/tits.2018.2856361 10.1109/ICME57554.2024.10687857 10.1609/aaai.v32i1.12301 10.1016/j.eswa.2018.12.005 10.1109/tiv.2022.3158750 10.3390/s130303270 10.1016/j.patcog.2017.08.014 10.1007/s00500-020-05566-4 10.1109/ICCV48922.2021.00375 10.1016/j.patcog.2014.02.004 10.1109/TSMC.2021.3049323 10.1016/j.compeleceng.2015.01.002 10.1109/tits.2021.3088488 10.1061/9780784482292.498 10.1016/j.jestch.2019.05.008 10.1007/s00521-016-2645-5 10.1109/tcsvt.2023.3313576 10.1109/ICCV51070.2023.00371 10.1109/JAS.2022.105695 10.3390/s17112475 10.1016/j.procs.2018.04.209 10.1109/tits.2018.2791572 10.1109/tits.2020.3005396 10.1016/j.imavis.2020.103935 10.1109/TASE.2015.2425404 10.3390/electronics12051079 10.1049/iet-its.2018.5256 10.1016/j.eswa.2014.10.024 10.1109/tcsvt.2018.2805704 10.1007/s00521-019-04512-2 10.1109/tits.2013.2252427 10.1007/s40747-021-00381-2 10.1109/access.2023.3292128 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TITS.2025.3574763 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 9541 |
| ExternalDocumentID | 10_1109_TITS_2025_3574763 11029632 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities (CHD) grantid: 300102224501; 300102224302 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 52272412 funderid: 10.13039/501100001809 – fundername: Shaanxi Key Research and Development Program grantid: 2021LLRH-04-01-01 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION |
| ID | FETCH-LOGICAL-c220t-77783bca01b824a06b3dbf18521d3d03f9b98793f61c4042b9b43b5d50f6a5153 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001508163900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Sat Nov 29 07:45:53 EST 2025 Wed Aug 27 02:14:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c220t-77783bca01b824a06b3dbf18521d3d03f9b98793f61c4042b9b43b5d50f6a5153 |
| ORCID | 0000-0003-3531-1215 0009-0009-9372-3032 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TITS_2025_3574763 ieee_primary_11029632 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 Wang (ref22) 2023; 36 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Luo (ref21) 2018; 53 ref24 ref23 ref26 ref25 ref20 ref28 ref27 ref29 |
| References_xml | – ident: ref29 doi: 10.1145/2522968.2522970 – ident: ref41 doi: 10.1109/TITS.2023.3321384 – ident: ref16 doi: 10.1007/s10462-023-10451-1 – ident: ref1 doi: 10.1109/tmech.2021.3064816 – volume: 53 start-page: 1253 issue: 6 year: 2018 ident: ref21 article-title: Automated lane marking identification based on improved Canny edge detection algorithm publication-title: J. Southwest Jiaotong Univ. – ident: ref32 doi: 10.3390/s23020789 – ident: ref44 doi: 10.1109/TSMC.2016.2616347 – ident: ref35 doi: 10.1109/tits.2017.2751746 – ident: ref5 doi: 10.1109/tits.2020.2989129 – ident: ref37 doi: 10.1109/TSMC.2022.3219380 – ident: ref51 doi: 10.1109/CVPR52688.2022.00097 – ident: ref30 doi: 10.1016/j.neucom.2021.08.105 – ident: ref26 doi: 10.1109/tits.2015.2464253 – ident: ref6 doi: 10.1109/jas.2023.123183 – ident: ref40 doi: 10.1109/TASE.2021.3129439 – ident: ref20 doi: 10.1007/s11042-021-10978-x – ident: ref27 doi: 10.1016/j.patcog.2015.12.010 – ident: ref52 doi: 10.1609/aaai.v38i2.27860 – ident: ref31 doi: 10.1109/tits.2023.3289165 – ident: ref10 doi: 10.1109/tits.2018.2856361 – ident: ref53 doi: 10.1109/ICME57554.2024.10687857 – ident: ref48 doi: 10.1609/aaai.v32i1.12301 – ident: ref25 doi: 10.1016/j.eswa.2018.12.005 – ident: ref33 doi: 10.1109/tiv.2022.3158750 – ident: ref19 doi: 10.3390/s130303270 – ident: ref3 doi: 10.1016/j.patcog.2017.08.014 – ident: ref23 doi: 10.1007/s00500-020-05566-4 – ident: ref50 doi: 10.1109/ICCV48922.2021.00375 – ident: ref46 doi: 10.1016/j.patcog.2014.02.004 – ident: ref38 doi: 10.1109/TSMC.2021.3049323 – ident: ref36 doi: 10.1016/j.compeleceng.2015.01.002 – ident: ref49 doi: 10.1109/tits.2021.3088488 – ident: ref12 doi: 10.1061/9780784482292.498 – ident: ref47 doi: 10.1016/j.jestch.2019.05.008 – volume: 36 start-page: 212 issue: 7 year: 2023 ident: ref22 article-title: Lane line distance detection based on fusion segmentation and a variable-scale window publication-title: China J. Highw. Transp. – ident: ref15 doi: 10.1007/s00521-016-2645-5 – ident: ref4 doi: 10.1109/tcsvt.2023.3313576 – ident: ref34 doi: 10.1109/ICCV51070.2023.00371 – ident: ref39 doi: 10.1109/JAS.2022.105695 – ident: ref11 doi: 10.3390/s17112475 – ident: ref45 doi: 10.1016/j.procs.2018.04.209 – ident: ref17 doi: 10.1109/tits.2018.2791572 – ident: ref2 doi: 10.1109/tits.2020.3005396 – ident: ref8 doi: 10.1016/j.imavis.2020.103935 – ident: ref42 doi: 10.1109/TASE.2015.2425404 – ident: ref24 doi: 10.3390/electronics12051079 – ident: ref13 doi: 10.1049/iet-its.2018.5256 – ident: ref7 doi: 10.1016/j.eswa.2014.10.024 – ident: ref18 doi: 10.1109/tcsvt.2018.2805704 – ident: ref43 doi: 10.1007/s00521-019-04512-2 – ident: ref14 doi: 10.1109/tits.2013.2252427 – ident: ref9 doi: 10.1007/s40747-021-00381-2 – ident: ref28 doi: 10.1109/access.2023.3292128 |
| SSID | ssj0014511 |
| Score | 2.445953 |
| Snippet | The reflections of multi-colored lights involved on rainy nights present strong uncertainties and abruptness, resulting in a high rate of false and missed... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 9529 |
| SubjectTerms | Accuracy discretization mechanism Feature extraction Filters Heuristic algorithms Image edge detection Lane detection memory mechanism Optimization rainy night Real-time systems Reflection Roads |
| Title | Lane Detection on Rainy Nights Based on Memory and Discretization Mechanisms |
| URI | https://ieeexplore.ieee.org/document/11029632 |
| Volume | 26 |
| WOSCitedRecordID | wos001508163900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60eNCDz4r1xR48CWk32SSbPfoqCrUIVugt7CvQg6k0qdB_78w21XrwIOQQNgks32R2ZnbmmyXkSgsO8zM8KBTLgtgIG2TKhIFJlYBgzEqtYn_YhBgOs_FYvjRkdc-Fcc754jPXxVufy7dTM8etsh6Yqgh-GFhxN4VIl2St75QBNtryzVGjOJAsWaUwQyZ7o6fRK4SCUdLlCbjPKf9lhNZOVfFGpb_3z-nsk93Ge6Q3S3EfkA1XHpKdtZ6CR2QwUKWj9672NVYlhQtzOAs6xDC8ordgtiyOPmON7YKq0tL7CSwerm4omfAE6cCT6r1qk7f-w-juMWiOTAhMFLEafGWRcW0UC3UWxYqlmltdIEE6tNwyXkgtM1DJIg1NDPqqpY65TmzCilSBa8OPSauclu6E0Ax038YgOBFa8KmsKqTCtIzGmIWnrkOuVxjmH8vOGLmPKJjMEfAcAc8bwDukjfj9vNhAd_rH-BnZxs-XdbHnpFXP5u6CbJnPelLNLr3gvwDmSqq_ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kCurBZ8X63IMnIe0mm9cefZUW0yAYobewr0APptKkQv-9s9tU68GDkEPYhLB8u7Mzk5lvBqEbEVGYn6ROwUns-DJSTsyl68iQR-CMKSa4b5tNRGkaj8fspSGrWy6M1tomn-muubWxfDWVc_OrrAeqyoMNAyfupmmd1dC1voMGptSWLY_q-Q4jwSqI6RLWy4bZKziDXtClARjQIf2lhtb6qli10t__54QO0F5jP-K75YIfog1dHqHdtaqCxyhJeKnxo65tllWJ4TJRnAVOjSNe4XtQXMqMjkyW7QLzUuHHCRwfum5ImfDEEIIn1XvVRm_9p-xh4DRNExzpeaQGazmKqZCcuCL2fE5CQZUoDEXaVVQRWjDBYhDKInSlDxIrmPCpCFRAipCDcUNPUKuclvoU4RikX_mwdJGrwKpSvGDcBGaE8VpoqDvodoVh_rGsjZFbn4Kw3ACeG8DzBvAOahv8fl5soDv7Y_wabQ-yUZInw_T5HO2YTy2zZC9Qq57N9SXakp_1pJpd2U3wBf8trgg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lane+Detection+on+Rainy+Nights+Based+on+Memory+and+Discretization+Mechanisms&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Li%2C+Yonghang&rft.au=Wang%2C+Chang&rft.au=Wang%2C+Yifei&rft.au=Ren%2C+Miao&rft.date=2025-07-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=26&rft.issue=7&rft.spage=9529&rft.epage=9541&rft_id=info:doi/10.1109%2FTITS.2025.3574763&rft.externalDocID=11029632 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |