Lane Detection on Rainy Nights Based on Memory and Discretization Mechanisms

The reflections of multi-colored lights involved on rainy nights present strong uncertainties and abruptness, resulting in a high rate of false and missed detections in existing methods. To solve this issue, this paper proposes a lane detection method based on memory and discretization mechanisms. F...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on intelligent transportation systems Ročník 26; číslo 7; s. 9529 - 9541
Hlavní autori: Li, Yonghang, Wang, Chang, Wang, Yifei, Ren, Miao, Niu, Jin, Zhao, Jikang, Du, Kai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.07.2025
Predmet:
ISSN:1524-9050, 1558-0016
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The reflections of multi-colored lights involved on rainy nights present strong uncertainties and abruptness, resulting in a high rate of false and missed detections in existing methods. To solve this issue, this paper proposes a lane detection method based on memory and discretization mechanisms. Firstly, a Memory Fruit-fly-optimizer with Individual Differences (MFID) is innovatively proposed to drive Multi-threshold Otsu (MOtsu)-based multi-class segmentation of lanes, which is a high-dimensional optimization task with real-time and local optimal challenges, for capturing lane clues obscured in multi-intensity reflections, consequently reducing missed detections. Specifically, to solve the challenges inherent in the task, the MFID incorporates a novel memory mechanism to establish fast-converging initial conditions for real-time detection, while creatively considering individual differences to motivate multi-swarm optimization that mitigates local optima risks. After integration, the MFID-MOtsu is constructed for lane segmentation. Subsequently, a dynamic discretization mechanism is proposed to efficiently separate lane edges from interference edges, mitigating accuracy degradation caused by their entanglement. Finally, the false detection issue is greatly reduced through the implementation of adaptive geometric filters. The experimental results demonstrate that the proposed method achieves an average accuracy of 93.21% on rainy nights, indicating an average improvement of 12.7% over state-of-the-art methods. Additionally, without any parameter modifications, the proposed method is applicable to both normal and classic challenging scenes, such as nights, tunnels, rainy days, and shadows. The algorithm achieves an average accuracy of 96.2% and an average detection speed of 46 frames per second.
AbstractList The reflections of multi-colored lights involved on rainy nights present strong uncertainties and abruptness, resulting in a high rate of false and missed detections in existing methods. To solve this issue, this paper proposes a lane detection method based on memory and discretization mechanisms. Firstly, a Memory Fruit-fly-optimizer with Individual Differences (MFID) is innovatively proposed to drive Multi-threshold Otsu (MOtsu)-based multi-class segmentation of lanes, which is a high-dimensional optimization task with real-time and local optimal challenges, for capturing lane clues obscured in multi-intensity reflections, consequently reducing missed detections. Specifically, to solve the challenges inherent in the task, the MFID incorporates a novel memory mechanism to establish fast-converging initial conditions for real-time detection, while creatively considering individual differences to motivate multi-swarm optimization that mitigates local optima risks. After integration, the MFID-MOtsu is constructed for lane segmentation. Subsequently, a dynamic discretization mechanism is proposed to efficiently separate lane edges from interference edges, mitigating accuracy degradation caused by their entanglement. Finally, the false detection issue is greatly reduced through the implementation of adaptive geometric filters. The experimental results demonstrate that the proposed method achieves an average accuracy of 93.21% on rainy nights, indicating an average improvement of 12.7% over state-of-the-art methods. Additionally, without any parameter modifications, the proposed method is applicable to both normal and classic challenging scenes, such as nights, tunnels, rainy days, and shadows. The algorithm achieves an average accuracy of 96.2% and an average detection speed of 46 frames per second.
Author Wang, Yifei
Du, Kai
Wang, Chang
Ren, Miao
Zhao, Jikang
Li, Yonghang
Niu, Jin
Author_xml – sequence: 1
  givenname: Yonghang
  orcidid: 0009-0009-9372-3032
  surname: Li
  fullname: Li, Yonghang
  email: yonghangli@chd.edu.cn
  organization: School of Automobile, Chang'an University, Xi'an, Shaanxi, China
– sequence: 2
  givenname: Chang
  orcidid: 0000-0003-3531-1215
  surname: Wang
  fullname: Wang, Chang
  email: wangchang@chd.edu.cn
  organization: School of Automobile, Chang'an University, Xi'an, Shaanxi, China
– sequence: 3
  givenname: Yifei
  surname: Wang
  fullname: Wang, Yifei
  email: wangyifei202208@126.com
  organization: School of Automobile, Chang'an University, Xi'an, Shaanxi, China
– sequence: 4
  givenname: Miao
  surname: Ren
  fullname: Ren, Miao
  email: renmiao@chd.edu.cn
  organization: School of Automobile, Chang'an University, Xi'an, Shaanxi, China
– sequence: 5
  givenname: Jin
  surname: Niu
  fullname: Niu, Jin
  email: niujin0310@163.com
  organization: School of Automobile, Chang'an University, Xi'an, Shaanxi, China
– sequence: 6
  givenname: Jikang
  surname: Zhao
  fullname: Zhao, Jikang
  email: zhaojikang@chd.edu.cn
  organization: School of Automobile, Chang'an University, Xi'an, Shaanxi, China
– sequence: 7
  givenname: Kai
  surname: Du
  fullname: Du, Kai
  email: dukai@chd.edu.cn
  organization: School of Electronics and Control Engineering, Chang'an University, Xi'an, China
BookMark eNpFkN1Kw0AQRhepYFt9AMGLvEDqzP4k2UttrRZSBa3XYXczsSt2I9nc1Ke3sQVhYIaP78zFmbBRaAMxdo0wQwR9u1lt3mYcuJoJlcs8E2dsjEoVKQBmo-HmMtWg4IJNYvw8pFIhjllZmkDJgnpyvW9DcphX48M-efYf2z4m9yZSPaRr2rXdPjGhThY-uo56_2P-kDW5rQk-7uIlO2_MV6Sr056y9-XDZv6Uli-Pq_ldmTrOoU_zPC-EdQbQFlwayKyobYOF4liLGkSjrS5yLZoMnQTJrbZSWFUraDKjUIkpw-Nf17UxdtRU353fmW5fIVSDjmrQUQ06qpOOA3NzZDwR_fcRuM4EF79IdF0k
CODEN ITISFG
Cites_doi 10.1145/2522968.2522970
10.1109/TITS.2023.3321384
10.1007/s10462-023-10451-1
10.1109/tmech.2021.3064816
10.3390/s23020789
10.1109/TSMC.2016.2616347
10.1109/tits.2017.2751746
10.1109/tits.2020.2989129
10.1109/TSMC.2022.3219380
10.1109/CVPR52688.2022.00097
10.1016/j.neucom.2021.08.105
10.1109/tits.2015.2464253
10.1109/jas.2023.123183
10.1109/TASE.2021.3129439
10.1007/s11042-021-10978-x
10.1016/j.patcog.2015.12.010
10.1609/aaai.v38i2.27860
10.1109/tits.2023.3289165
10.1109/tits.2018.2856361
10.1109/ICME57554.2024.10687857
10.1609/aaai.v32i1.12301
10.1016/j.eswa.2018.12.005
10.1109/tiv.2022.3158750
10.3390/s130303270
10.1016/j.patcog.2017.08.014
10.1007/s00500-020-05566-4
10.1109/ICCV48922.2021.00375
10.1016/j.patcog.2014.02.004
10.1109/TSMC.2021.3049323
10.1016/j.compeleceng.2015.01.002
10.1109/tits.2021.3088488
10.1061/9780784482292.498
10.1016/j.jestch.2019.05.008
10.1007/s00521-016-2645-5
10.1109/tcsvt.2023.3313576
10.1109/ICCV51070.2023.00371
10.1109/JAS.2022.105695
10.3390/s17112475
10.1016/j.procs.2018.04.209
10.1109/tits.2018.2791572
10.1109/tits.2020.3005396
10.1016/j.imavis.2020.103935
10.1109/TASE.2015.2425404
10.3390/electronics12051079
10.1049/iet-its.2018.5256
10.1016/j.eswa.2014.10.024
10.1109/tcsvt.2018.2805704
10.1007/s00521-019-04512-2
10.1109/tits.2013.2252427
10.1007/s40747-021-00381-2
10.1109/access.2023.3292128
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2025.3574763
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 9541
ExternalDocumentID 10_1109_TITS_2025_3574763
11029632
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities (CHD)
  grantid: 300102224501; 300102224302
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 52272412
  funderid: 10.13039/501100001809
– fundername: Shaanxi Key Research and Development Program
  grantid: 2021LLRH-04-01-01
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-77783bca01b824a06b3dbf18521d3d03f9b98793f61c4042b9b43b5d50f6a5153
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001508163900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sat Nov 29 07:45:53 EST 2025
Wed Aug 27 02:14:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-77783bca01b824a06b3dbf18521d3d03f9b98793f61c4042b9b43b5d50f6a5153
ORCID 0000-0003-3531-1215
0009-0009-9372-3032
PageCount 13
ParticipantIDs crossref_primary_10_1109_TITS_2025_3574763
ieee_primary_11029632
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
Wang (ref22) 2023; 36
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Luo (ref21) 2018; 53
ref24
ref23
ref26
ref25
ref20
ref28
ref27
ref29
References_xml – ident: ref29
  doi: 10.1145/2522968.2522970
– ident: ref41
  doi: 10.1109/TITS.2023.3321384
– ident: ref16
  doi: 10.1007/s10462-023-10451-1
– ident: ref1
  doi: 10.1109/tmech.2021.3064816
– volume: 53
  start-page: 1253
  issue: 6
  year: 2018
  ident: ref21
  article-title: Automated lane marking identification based on improved Canny edge detection algorithm
  publication-title: J. Southwest Jiaotong Univ.
– ident: ref32
  doi: 10.3390/s23020789
– ident: ref44
  doi: 10.1109/TSMC.2016.2616347
– ident: ref35
  doi: 10.1109/tits.2017.2751746
– ident: ref5
  doi: 10.1109/tits.2020.2989129
– ident: ref37
  doi: 10.1109/TSMC.2022.3219380
– ident: ref51
  doi: 10.1109/CVPR52688.2022.00097
– ident: ref30
  doi: 10.1016/j.neucom.2021.08.105
– ident: ref26
  doi: 10.1109/tits.2015.2464253
– ident: ref6
  doi: 10.1109/jas.2023.123183
– ident: ref40
  doi: 10.1109/TASE.2021.3129439
– ident: ref20
  doi: 10.1007/s11042-021-10978-x
– ident: ref27
  doi: 10.1016/j.patcog.2015.12.010
– ident: ref52
  doi: 10.1609/aaai.v38i2.27860
– ident: ref31
  doi: 10.1109/tits.2023.3289165
– ident: ref10
  doi: 10.1109/tits.2018.2856361
– ident: ref53
  doi: 10.1109/ICME57554.2024.10687857
– ident: ref48
  doi: 10.1609/aaai.v32i1.12301
– ident: ref25
  doi: 10.1016/j.eswa.2018.12.005
– ident: ref33
  doi: 10.1109/tiv.2022.3158750
– ident: ref19
  doi: 10.3390/s130303270
– ident: ref3
  doi: 10.1016/j.patcog.2017.08.014
– ident: ref23
  doi: 10.1007/s00500-020-05566-4
– ident: ref50
  doi: 10.1109/ICCV48922.2021.00375
– ident: ref46
  doi: 10.1016/j.patcog.2014.02.004
– ident: ref38
  doi: 10.1109/TSMC.2021.3049323
– ident: ref36
  doi: 10.1016/j.compeleceng.2015.01.002
– ident: ref49
  doi: 10.1109/tits.2021.3088488
– ident: ref12
  doi: 10.1061/9780784482292.498
– ident: ref47
  doi: 10.1016/j.jestch.2019.05.008
– volume: 36
  start-page: 212
  issue: 7
  year: 2023
  ident: ref22
  article-title: Lane line distance detection based on fusion segmentation and a variable-scale window
  publication-title: China J. Highw. Transp.
– ident: ref15
  doi: 10.1007/s00521-016-2645-5
– ident: ref4
  doi: 10.1109/tcsvt.2023.3313576
– ident: ref34
  doi: 10.1109/ICCV51070.2023.00371
– ident: ref39
  doi: 10.1109/JAS.2022.105695
– ident: ref11
  doi: 10.3390/s17112475
– ident: ref45
  doi: 10.1016/j.procs.2018.04.209
– ident: ref17
  doi: 10.1109/tits.2018.2791572
– ident: ref2
  doi: 10.1109/tits.2020.3005396
– ident: ref8
  doi: 10.1016/j.imavis.2020.103935
– ident: ref42
  doi: 10.1109/TASE.2015.2425404
– ident: ref24
  doi: 10.3390/electronics12051079
– ident: ref13
  doi: 10.1049/iet-its.2018.5256
– ident: ref7
  doi: 10.1016/j.eswa.2014.10.024
– ident: ref18
  doi: 10.1109/tcsvt.2018.2805704
– ident: ref43
  doi: 10.1007/s00521-019-04512-2
– ident: ref14
  doi: 10.1109/tits.2013.2252427
– ident: ref9
  doi: 10.1007/s40747-021-00381-2
– ident: ref28
  doi: 10.1109/access.2023.3292128
SSID ssj0014511
Score 2.445953
Snippet The reflections of multi-colored lights involved on rainy nights present strong uncertainties and abruptness, resulting in a high rate of false and missed...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 9529
SubjectTerms Accuracy
discretization mechanism
Feature extraction
Filters
Heuristic algorithms
Image edge detection
Lane detection
memory mechanism
Optimization
rainy night
Real-time systems
Reflection
Roads
Title Lane Detection on Rainy Nights Based on Memory and Discretization Mechanisms
URI https://ieeexplore.ieee.org/document/11029632
Volume 26
WOSCitedRecordID wos001508163900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60eNCDz4r1xR48CWk32SSbPfoqCrUIVugt7CvQg6k0qdB_78w21XrwIOQQNgks32R2ZnbmmyXkSgsO8zM8KBTLgtgIG2TKhIFJlYBgzEqtYn_YhBgOs_FYvjRkdc-Fcc754jPXxVufy7dTM8etsh6Yqgh-GFhxN4VIl2St75QBNtryzVGjOJAsWaUwQyZ7o6fRK4SCUdLlCbjPKf9lhNZOVfFGpb_3z-nsk93Ge6Q3S3EfkA1XHpKdtZ6CR2QwUKWj9672NVYlhQtzOAs6xDC8ordgtiyOPmON7YKq0tL7CSwerm4omfAE6cCT6r1qk7f-w-juMWiOTAhMFLEafGWRcW0UC3UWxYqlmltdIEE6tNwyXkgtM1DJIg1NDPqqpY65TmzCilSBa8OPSauclu6E0Ax038YgOBFa8KmsKqTCtIzGmIWnrkOuVxjmH8vOGLmPKJjMEfAcAc8bwDukjfj9vNhAd_rH-BnZxs-XdbHnpFXP5u6CbJnPelLNLr3gvwDmSqq_
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kCurBZ8X63IMnIe0mm9cefZUW0yAYobewr0APptKkQv-9s9tU68GDkEPYhLB8u7Mzk5lvBqEbEVGYn6ROwUns-DJSTsyl68iQR-CMKSa4b5tNRGkaj8fspSGrWy6M1tomn-muubWxfDWVc_OrrAeqyoMNAyfupmmd1dC1voMGptSWLY_q-Q4jwSqI6RLWy4bZKziDXtClARjQIf2lhtb6qli10t__54QO0F5jP-K75YIfog1dHqHdtaqCxyhJeKnxo65tllWJ4TJRnAVOjSNe4XtQXMqMjkyW7QLzUuHHCRwfum5ImfDEEIIn1XvVRm_9p-xh4DRNExzpeaQGazmKqZCcuCL2fE5CQZUoDEXaVVQRWjDBYhDKInSlDxIrmPCpCFRAipCDcUNPUKuclvoU4RikX_mwdJGrwKpSvGDcBGaE8VpoqDvodoVh_rGsjZFbn4Kw3ACeG8DzBvAOahv8fl5soDv7Y_wabQ-yUZInw_T5HO2YTy2zZC9Qq57N9SXakp_1pJpd2U3wBf8trgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lane+Detection+on+Rainy+Nights+Based+on+Memory+and+Discretization+Mechanisms&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Li%2C+Yonghang&rft.au=Wang%2C+Chang&rft.au=Wang%2C+Yifei&rft.au=Ren%2C+Miao&rft.date=2025-07-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=26&rft.issue=7&rft.spage=9529&rft.epage=9541&rft_id=info:doi/10.1109%2FTITS.2025.3574763&rft.externalDocID=11029632
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon