Slim multi-scale convolutional autoencoder-based reduced-order models for interpretable features of a complex dynamical system

In recent years, data-driven deep learning models have gained significant importance in the analysis of turbulent dynamical systems. Within the context of reduced-order models, convolutional autoencoders (CAEs) pose a universally applicable alternative to conventional approaches. They can learn nonl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:APL machine learning Ročník 3; číslo 1; s. 016112 - 016112-15
Hlavní autoři: Teutsch, Philipp, Pfeffer, Philipp, Sharifi Ghazijahani, Mohammad, Cierpka, Christian, Schumacher, Jörg, Mäder, Patrick
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIP Publishing LLC 01.03.2025
ISSN:2770-9019, 2770-9019
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, data-driven deep learning models have gained significant importance in the analysis of turbulent dynamical systems. Within the context of reduced-order models, convolutional autoencoders (CAEs) pose a universally applicable alternative to conventional approaches. They can learn nonlinear transformations directly from data, without prior knowledge of the system. However, the features generated by such models lack interpretability. Thus, the resulting model is a black-box that effectively reduces the complexity of the system but does not provide insights into the meaning of the latent features. To address this critical issue, we introduce a novel interpretable CAE approach for high-dimensional fluid flow data that maintains the reconstruction quality of conventional CAEs and allows for feature interpretation. Our method can be easily integrated into any existing CAE architecture with minor modifications of the training process. We compare our approach to Proper Orthogonal Decomposition (POD) and two existing methods for interpretable CAEs. We apply all methods to three different experimental turbulent Rayleigh–Bénard convection datasets with varying complexity. Our results show that the proposed method is lightweight, easy to train, and achieves relative reconstruction performance improvements of up to 6.4% over POD for 64 modes. The relative improvement increases to up to 229.8% as the number of modes decreases. In addition, our method delivers interpretable features similar to those of POD and is significantly less resource-intensive than existing CAE approaches, using less than 2% of the parameters. These approaches either trade interpretability for reconstruction performance or only provide interpretability to a limited extent.
AbstractList In recent years, data-driven deep learning models have gained significant importance in the analysis of turbulent dynamical systems. Within the context of reduced-order models, convolutional autoencoders (CAEs) pose a universally applicable alternative to conventional approaches. They can learn nonlinear transformations directly from data, without prior knowledge of the system. However, the features generated by such models lack interpretability. Thus, the resulting model is a black-box that effectively reduces the complexity of the system but does not provide insights into the meaning of the latent features. To address this critical issue, we introduce a novel interpretable CAE approach for high-dimensional fluid flow data that maintains the reconstruction quality of conventional CAEs and allows for feature interpretation. Our method can be easily integrated into any existing CAE architecture with minor modifications of the training process. We compare our approach to Proper Orthogonal Decomposition (POD) and two existing methods for interpretable CAEs. We apply all methods to three different experimental turbulent Rayleigh–Bénard convection datasets with varying complexity. Our results show that the proposed method is lightweight, easy to train, and achieves relative reconstruction performance improvements of up to 6.4% over POD for 64 modes. The relative improvement increases to up to 229.8% as the number of modes decreases. In addition, our method delivers interpretable features similar to those of POD and is significantly less resource-intensive than existing CAE approaches, using less than 2% of the parameters. These approaches either trade interpretability for reconstruction performance or only provide interpretability to a limited extent.
Author Sharifi Ghazijahani, Mohammad
Mäder, Patrick
Teutsch, Philipp
Schumacher, Jörg
Pfeffer, Philipp
Cierpka, Christian
Author_xml – sequence: 1
  givenname: Philipp
  orcidid: 0000-0002-4247-7961
  surname: Teutsch
  fullname: Teutsch, Philipp
– sequence: 2
  givenname: Philipp
  orcidid: 0000-0001-8503-774X
  surname: Pfeffer
  fullname: Pfeffer, Philipp
– sequence: 3
  givenname: Mohammad
  orcidid: 0000-0001-5885-4138
  surname: Sharifi Ghazijahani
  fullname: Sharifi Ghazijahani, Mohammad
– sequence: 4
  givenname: Christian
  orcidid: 0000-0002-8464-5513
  surname: Cierpka
  fullname: Cierpka, Christian
– sequence: 5
  givenname: Jörg
  orcidid: 0000-0002-1359-4536
  surname: Schumacher
  fullname: Schumacher, Jörg
– sequence: 6
  givenname: Patrick
  orcidid: 0000-0001-6871-2707
  surname: Mäder
  fullname: Mäder, Patrick
BookMark eNpNkU1LxDAQhoMoqKsH_0GuHqqTj7bboyx-LAge1HOZJhOppM2SpOJe_O1WdxFPMzwvPAPznrLDMYzE2IWAKwGVui6vQGqtRXXATmRdQ9GAaA7_7cfsPKV3AJBNAzXACft69v3Ah8nnvkgGPXETxo_gp9yHET3HKQcaTbAUiw4TWR7JToZsEeLM-DAnPnEXIu_HTHETKWM3axxhniIlHhzHWTpsPH1yux1x6Oc7PG1TpuGMHTn0ic73c8Fe725fVg_F49P9enXzWBgpIRdaOCiXWrlKC2isrbWutQSnSwNWKYukKxIdVsuaVGWUUcrNr6hdaUmUUqgFW--8NuB7u4n9gHHbBuzbXxDiW4sx98ZTK1XlliSc7KjSAAKFbYywdaeW-INn1-XOZWJIKZL78wlof3poy3bfg_oGoGB9rw
Cites_doi 10.1063/1.4979665
10.1006/jsvi.2001.4041
10.3847/1538-4357/ad1c55
10.1146/annurev-fluid-010719-060214
10.1140/epje/s10189-023-00356-w
10.1038/s42256-024-00810-0
10.1140/epje/i2012-12058-1
10.1063/5.0191403
10.1063/5.0213700
10.1146/annurev.fluid.39.050905.110308
10.1063/5.0087977
10.1126/science.aaw4741
10.1098/rspa.2017.0844
10.1002/nme.6681
10.1146/annurev.fluid.25.1.539
10.1017/jfm.2019.822
10.1063/5.0074310
10.1631/fitee.1700808
10.1145/1553374.1553380
10.5555/2627435.2670313
10.1515/teme-2022-0121
10.1103/physrevfluids.5.113506
10.1073/pnas.1900358116
10.1063/5.0065637
10.1016/j.cma.2021.114181
10.1073/pnas.2213638120
10.1103/physrevresearch.4.033176
10.1063/5.0039986
10.1007/s00348-023-03736-2
10.1063/5.0020721
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1063/5.0244416
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2770-9019
EndPage 016112-15
ExternalDocumentID oai_doaj_org_article_236f8e1f2be64001a1d9c1d7b38ae1f2
10_1063_5_0244416
GroupedDBID AAFWJ
AAYXX
ABDBF
ABJGX
AFPKN
AGLKD
AJDQP
AKSGC
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
RQS
ID FETCH-LOGICAL-c220t-41f05843f64109dd7447420f45c0d33dae46e1ba687e36c3c33f0247f5de15213
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001493756700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2770-9019
IngestDate Mon Nov 10 04:31:02 EST 2025
Sat Nov 29 07:57:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-41f05843f64109dd7447420f45c0d33dae46e1ba687e36c3c33f0247f5de15213
ORCID 0000-0001-5885-4138
0000-0001-8503-774X
0000-0002-1359-4536
0000-0001-6871-2707
0000-0002-8464-5513
0000-0002-4247-7961
OpenAccessLink https://doaj.org/article/236f8e1f2be64001a1d9c1d7b38ae1f2
ParticipantIDs doaj_primary_oai_doaj_org_article_236f8e1f2be64001a1d9c1d7b38ae1f2
crossref_primary_10_1063_5_0244416
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle APL machine learning
PublicationYear 2025
Publisher AIP Publishing LLC
Publisher_xml – name: AIP Publishing LLC
References 2025022614075408400_c18
(2025022614075408400_c42) 2014; 27
2025022614075408400_c16
(2025022614075408400_c41) 2014; 15
2025022614075408400_c36
2025022614075408400_c34
(2025022614075408400_c37) 2025; 3
(2025022614075408400_c13) 2021; 33
(2025022614075408400_c45) 2009
(2025022614075408400_c5) 2019; 116
(2025022614075408400_c46) 2022
(2025022614075408400_c4) 2023; 120
(2025022614075408400_c21) 2021; 33
(2025022614075408400_c39) 2013; 30
(2025022614075408400_c30) 2012; 35
(2025022614075408400_c9) 2023; 46
(2025022614075408400_c22) 2021; 11
(2025022614075408400_c17) 1993; 25
(2025022614075408400_c27) 2022; 388
2025022614075408400_c20
(2025022614075408400_c26) 2007; 39
(2025022614075408400_c14) 2021; 122
(2025022614075408400_c19) 2000; 78
(2025022614075408400_c43) 2016
(2025022614075408400_c25) 2019
(2025022614075408400_c3) 2020; 367
(2025022614075408400_c29) 2020; 32
(2025022614075408400_c38) 2002; 252
(2025022614075408400_c32) 2023; 90
2025022614075408400_c44
(2025022614075408400_c6) 2020; 5
(2025022614075408400_c35) 2019
(2025022614075408400_c11) 2024; 964
(2025022614075408400_c2) 2017; 27
(2025022614075408400_c1) 2020; 52
(2025022614075408400_c28) 2020; 882
(2025022614075408400_c12) 2018; 474
(2025022614075408400_c8) 2023; 64
(2025022614075408400_c10) 2024; 6
(2025022614075408400_c40) 2015
(2025022614075408400_c31) 2018
(2025022614075408400_c33) 2024; 36
(2025022614075408400_c7) 2022; 4
(2025022614075408400_c23) 2017
(2025022614075408400_c24) 2018; 19
(2025022614075408400_c15) 2022; 34
References_xml – volume: 27
  start-page: 041102
  year: 2017
  ident: 2025022614075408400_c2
  article-title: Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
  publication-title: Chaos
  doi: 10.1063/1.4979665
– volume: 252
  start-page: 527
  year: 2002
  ident: 2025022614075408400_c38
  article-title: Proper orthogonal decomposition and its applications—Part I: Theory
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.2001.4041
– volume-title: Physics of Buoyant Flows: From Instabilities to Turbulence
  year: 2018
  ident: 2025022614075408400_c31
– volume: 964
  start-page: 2
  year: 2024
  ident: 2025022614075408400_c11
  article-title: Extending a physics-informed machine-learning network for superresolution studies of Rayleigh–Bénard convection
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ad1c55
– volume: 52
  start-page: 477
  year: 2020
  ident: 2025022614075408400_c1
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
– ident: 2025022614075408400_c44
– volume: 46
  start-page: 102
  year: 2023
  ident: 2025022614075408400_c9
  article-title: Topical issue on quantitative AI in complex fluids and complex flows: Challenges and benchmarks
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/s10189-023-00356-w
– volume: 6
  start-page: 393
  year: 2024
  ident: 2025022614075408400_c10
  article-title: Synthetic Lagrangian turbulence by generative diffusion models
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-024-00810-0
– start-page: 113
  year: 2019
  ident: 2025022614075408400_c35
  article-title: AutoAugment: Learning augmentation strategies from data
– start-page: 448
  year: 2015
  ident: 2025022614075408400_c40
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of Machine Learning Research
– volume: 35
  start-page: 58
  year: 2012
  ident: 2025022614075408400_c30
  article-title: New perspectives in turbulent Rayleigh-Bénard convection
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2012-12058-1
– volume: 36
  start-page: 035120
  year: 2024
  ident: 2025022614075408400_c33
  article-title: Spatio-temporal dynamics of superstructures and vortices in turbulent Rayleigh–Bénard convection
  publication-title: Phys. Fluids
  doi: 10.1063/5.0191403
– volume: 3
  start-page: 016104
  year: 2025
  ident: 2025022614075408400_c37
  article-title: Large-scale-aware data augmentation for reduced-order models of high-dimensional flows
  publication-title: APL Mach. Learn.
  doi: 10.1063/5.0213700
– volume: 39
  start-page: 447
  year: 2007
  ident: 2025022614075408400_c26
  article-title: Turbulence transition in pipe flow
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.39.050905.110308
– volume-title: Transactions on Machine Learning Research
  year: 2022
  ident: 2025022614075408400_c46
  article-title: Flipped classroom: Effective teaching for time series forecasting
– volume: 34
  start-page: 045106
  year: 2022
  ident: 2025022614075408400_c15
  article-title: Direct data-driven forecast of local turbulent heat flux in Rayleigh–Bénard convection
  publication-title: Phys. Fluids
  doi: 10.1063/5.0087977
– volume: 367
  start-page: 1026
  year: 2020
  ident: 2025022614075408400_c3
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– ident: 2025022614075408400_c36
– ident: 2025022614075408400_c34
– ident: 2025022614075408400_c16
– volume: 474
  start-page: 20170844
  year: 2018
  ident: 2025022614075408400_c12
  article-title: Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2017.0844
– volume: 122
  start-page: 3780
  year: 2021
  ident: 2025022614075408400_c14
  article-title: An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6681
– volume: 25
  start-page: 539
  year: 1993
  ident: 2025022614075408400_c17
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.25.1.539
– volume: 882
  start-page: A13
  year: 2020
  ident: 2025022614075408400_c28
  article-title: Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.822
– volume: 33
  start-page: 121702
  year: 2021
  ident: 2025022614075408400_c21
  article-title: Nonlinear proper orthogonal decomposition for convection-dominated flows
  publication-title: Phys. Fluids
  doi: 10.1063/5.0074310
– volume: 78
  start-page: 808
  year: 2000
  ident: 2025022614075408400_c19
  article-title: An introduction to the proper orthogonal decomposition
  publication-title: Curr. Sci.
– volume: 19
  start-page: 27
  year: 2018
  ident: 2025022614075408400_c24
  article-title: Visual interpretability for deep learning: A survey
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/fitee.1700808
– ident: 2025022614075408400_c18
  article-title: A tutorial on the proper orthogonal decomposition
– start-page: 41
  volume-title: ICML
  year: 2009
  ident: 2025022614075408400_c45
  article-title: Curriculum learning
  doi: 10.1145/1553374.1553380
– ident: 2025022614075408400_c20
– volume: 15
  start-page: 1929
  year: 2014
  ident: 2025022614075408400_c41
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
  doi: 10.5555/2627435.2670313
– volume: 90
  start-page: 296
  year: 2023
  ident: 2025022614075408400_c32
  article-title: The SCALEX facility – an apparatus for scaled fluid dynamical experiments
  publication-title: TM Tech. Mess.
  doi: 10.1515/teme-2022-0121
– start-page: 72
  volume-title: Artificial Neural Networks and Machine Learning – ICANN 2016
  year: 2016
  ident: 2025022614075408400_c43
  article-title: Analysis of dropout learning regarded as ensemble learning
– volume: 27
  start-page: 3365
  year: 2014
  ident: 2025022614075408400_c42
  article-title: Learning with pseudo-ensembles
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 5
  start-page: 113506
  year: 2020
  ident: 2025022614075408400_c6
  article-title: Reservoir computing model of two-dimensional turbulent convection
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/physrevfluids.5.113506
– volume: 116
  start-page: 8667
  year: 2019
  ident: 2025022614075408400_c5
  article-title: Deep learning in turbulent convection networks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1900358116
– volume: 11
  start-page: 105211
  year: 2021
  ident: 2025022614075408400_c22
  article-title: Feature extraction of fields of fluid dynamics data using sparse convolutional autoencoder
  publication-title: AIP Adv.
  doi: 10.1063/5.0065637
– start-page: 454
  year: 2019
  ident: 2025022614075408400_c25
  article-title: Alime: Autoencoder based approach for local interpretability
– volume: 388
  start-page: 114181
  year: 2022
  ident: 2025022614075408400_c27
  article-title: POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114181
– volume: 30
  start-page: 3
  year: 2013
  ident: 2025022614075408400_c39
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc. ICML
– volume: 120
  start-page: e2213638120
  year: 2023
  ident: 2025022614075408400_c4
  article-title: Lagrangian large eddy simulations via physics-informed machine learning
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2213638120
– volume: 4
  start-page: 033176
  year: 2022
  ident: 2025022614075408400_c7
  article-title: Hybrid quantum-classical reservoir computing of thermal convection flow
  publication-title: Phys. Rev. Res.
  doi: 10.1103/physrevresearch.4.033176
– volume: 33
  start-page: 037106
  year: 2021
  ident: 2025022614075408400_c13
  article-title: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
  publication-title: Phys. Fluids
  doi: 10.1063/5.0039986
– start-page: 1
  year: 2017
  ident: 2025022614075408400_c23
  article-title: Interpretability of deep learning models: A survey of results
– volume: 64
  start-page: 191
  year: 2023
  ident: 2025022614075408400_c8
  article-title: Data-driven estimation of scalar quantities from planar velocity measurements by deep learning applied to temperature in thermal convection
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-023-03736-2
– volume: 32
  start-page: 095110
  year: 2020
  ident: 2025022614075408400_c29
  article-title: Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data
  publication-title: Phys. Fluids
  doi: 10.1063/5.0020721
SSID ssj0002990700
Score 2.2913535
Snippet In recent years, data-driven deep learning models have gained significant importance in the analysis of turbulent dynamical systems. Within the context of...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 016112
Title Slim multi-scale convolutional autoencoder-based reduced-order models for interpretable features of a complex dynamical system
URI https://doaj.org/article/236f8e1f2be64001a1d9c1d7b38ae1f2
Volume 3
WOSCitedRecordID wos001493756700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2770-9019
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002990700
  issn: 2770-9019
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2770-9019
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002990700
  issn: 2770-9019
  databaseCode: M~E
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHrz4Ft8E8RptMk3aHlUUL4qggreSdmZgQXdldxVP_naTtCvryYuXHkIZysxkHvTj-4Q4CUkCGNYGxcaRyg2jqkosVeNBG4NNSVwmsYni7q58fq7u56S-IiasowfuHHdmwHFJmk1DLuSb9hqrVmPRQOnjcay-WVHNLVOxBsciW2TZjErIwZk9Dd0o9H73qwHN8fSnhnK9Jlb6SVCed1-wLhZouCFWZyoLsr90m-Lr4WXwKhPwT02CR0lGpHifMcGAf5-OIhsl0ljFnoRyHOlYCVWi1ZRJ62Yiw3AqBz8IwyaYYUqknhM5YullwpbTp8ROoj4Y7kiet8TT9dXj5Y3qVRNUa0w2VbnmLEwVwC7XWYVY5HlYfzPObZshAHrKHenGu7IgcC20ABxcU7BFis0ctsXicDSkHSGx5Yo4LEhc-dyC9aawCNa1umFiC7vieObK-q0jx6jTT20Hta17f--Ki-jknxcin3U6CFGu-yjXf0V57z-M7ItlE9V7E4LsQCxOx-90KJbaj-lgMj5KCRSet19X39wMz0s
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slim+multi-scale+convolutional+autoencoder-based+reduced-order+models+for+interpretable+features+of+a+complex+dynamical+system&rft.jtitle=APL+machine+learning&rft.au=Teutsch%2C+Philipp&rft.au=Pfeffer%2C+Philipp&rft.au=Sharifi+Ghazijahani%2C+Mohammad&rft.au=Cierpka%2C+Christian&rft.date=2025-03-01&rft.issn=2770-9019&rft.eissn=2770-9019&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1063%2F5.0244416&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0244416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2770-9019&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2770-9019&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2770-9019&client=summon