Rolling Dispatch for AAVs Inspection Based on Task Adaptive Clustering
The assignment and scheduling of AAV power inspection tasks constitute a representative Mixed-Integer Nonlinear Programming (MINLP) problem. However, due to the complexity of the workflow, manual methods and existing heuristics struggle to balance time costs and solution quality for large-scale task...
Uloženo v:
| Vydáno v: | IEEE transactions on automation science and engineering Ročník 22; s. 14108 - 14119 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2025
|
| Témata: | |
| ISSN: | 1545-5955, 1558-3783 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The assignment and scheduling of AAV power inspection tasks constitute a representative Mixed-Integer Nonlinear Programming (MINLP) problem. However, due to the complexity of the workflow, manual methods and existing heuristics struggle to balance time costs and solution quality for large-scale tasks. To address this challenge, this paper introduces a rolling window approach for batch processing and proposes a clustering strategy before scheduling. Building on this strategy, we develop a rolling dispatch algorithm utilizing task-adaptive clustering (RDA-TAC), which alleviates problem complexity and enhances search efficiency. Specifically, we present a novel MINLP model designed to minimize total equivalent endurance losses, incorporating multi-level and sequential inspection constraints derived from actual inspection processes. We then batch and segment large-scale tasks, treating task fragments as the smallest units for assignment, and adaptively adjust them to convert the problem into a single-drone path planning task. Through nine scenarios based on real power grid data, RDA-TAC attains optimal solutions for small-scale tasks and outperforms manual and heuristic methods in more complex cases, demonstrating a tenfold increase in solving speed. Note to Practitioners-Autonomous aerial vehicles (AAVs) are the leading method for power line inspection, offering rapid deployment, cost-effectiveness, and improved safety. However, traditional manual assignment and path planning algorithms often struggle with large-scale and complex tasks. To address this, we propose a strategy that clusters tasks before scheduling, reducing complexity and improving efficiency. Empirical validation demonstrates that our method balances solution time and quality effectively. Comparative results are included in the attached digital format. |
|---|---|
| AbstractList | The assignment and scheduling of AAV power inspection tasks constitute a representative Mixed-Integer Nonlinear Programming (MINLP) problem. However, due to the complexity of the workflow, manual methods and existing heuristics struggle to balance time costs and solution quality for large-scale tasks. To address this challenge, this paper introduces a rolling window approach for batch processing and proposes a clustering strategy before scheduling. Building on this strategy, we develop a rolling dispatch algorithm utilizing task-adaptive clustering (RDA-TAC), which alleviates problem complexity and enhances search efficiency. Specifically, we present a novel MINLP model designed to minimize total equivalent endurance losses, incorporating multi-level and sequential inspection constraints derived from actual inspection processes. We then batch and segment large-scale tasks, treating task fragments as the smallest units for assignment, and adaptively adjust them to convert the problem into a single-drone path planning task. Through nine scenarios based on real power grid data, RDA-TAC attains optimal solutions for small-scale tasks and outperforms manual and heuristic methods in more complex cases, demonstrating a tenfold increase in solving speed. Note to Practitioners-Autonomous aerial vehicles (AAVs) are the leading method for power line inspection, offering rapid deployment, cost-effectiveness, and improved safety. However, traditional manual assignment and path planning algorithms often struggle with large-scale and complex tasks. To address this, we propose a strategy that clusters tasks before scheduling, reducing complexity and improving efficiency. Empirical validation demonstrates that our method balances solution time and quality effectively. Comparative results are included in the attached digital format. |
| Author | Wang, Lei Ren, Jize Li, Xian Song, Nanfeng |
| Author_xml | – sequence: 1 givenname: Jize orcidid: 0009-0001-8787-9606 surname: Ren fullname: Ren, Jize email: sy2203116@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Nanfeng orcidid: 0009-0005-6966-1274 surname: Song fullname: Song, Nanfeng email: sy2303116@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Xian surname: Li fullname: Li, Xian email: lixian@qdu.edu.cn organization: School of Automation, Qingdao University, Qingdao, Shandong, China – sequence: 4 givenname: Lei orcidid: 0000-0002-7014-2149 surname: Wang fullname: Wang, Lei email: lwang@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China |
| BookMark | eNpNkM1Kw0AUhQepYFt9AMHFvEDind8ky1hbLRQEjW7DdHJHozEJM1Ho25vQLlydszjfWXwLMmu7Fgm5ZhAzBtltkb-sYw5cxUIpkUh1RuZMqTQSSSpmU5cqUplSF2QRwicAl2kGc7J57pqmbt_pfR16M9gP6jpP8_wt0G0berRD3bX0zgSs6FgKE75oXpl-qH-RrpqfMKAf8Uty7kwT8OqUS_K6WRerx2j39LBd5bvIcg5DJLgCy4x0iUOo9F44mVqQWglgztnUaEyMlRyZ21sJuuI6sTpzlTGMjUuxJOz4a30XgkdX9r7-Nv5QMignEeUkopxElCcRI3NzZGpE_LfPRMK0Fn8At1u5 |
| CODEN | ITASC7 |
| Cites_doi | 10.1109/robot.2007.363883 10.3390/drones8020052 10.2514/1.I011202 10.1109/tase.2021.3062154 10.1016/j.cor.2018.11.005 10.1109/TSMC.2018.2861879 10.1109/TASE.2022.3182057 10.1016/j.ijpe.2018.07.016 10.1016/j.ejor.2017.10.017 10.1109/tase.2022.3175565 10.1016/S0377-2217(97)00290-7 10.1109/isie.2007.4374920 10.1109/TII.2021.3131195 10.1016/j.knosys.2018.07.024 10.1007/s10846-018-0914-5 10.1109/JIOT.2020.2999083 10.1109/TITS.2022.3215084 10.1109/TASE.2024.3358894 10.1016/j.proeng.2011.08.630 10.1016/j.trc.2023.104407 10.1007/s11370-022-00452-4 10.3389/fenrg.2021.713634 10.1109/TASE.2022.3213254 10.1080/24725854.2022.2060535 10.1109/TEVC.2014.2362558 10.1109/TPWRD.2009.2035427 10.12677/SG.2015.53018 10.1016/j.ejor.2024.02.010 10.1109/TASE.2018.2868471 10.1016/j.ijepes.2017.12.016 10.1007/s00291-012-0289-0 10.1109/MELCON.2014.6820566 10.1016/j.ijepes.2023.108982 10.1109/TII.2018.2794320 10.1109/PIMRC56721.2023.10293957 10.1016/j.ejor.2020.01.008 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TASE.2025.3553745 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 14119 |
| ExternalDocumentID | 10_1109_TASE_2025_3553745 10937166 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c220t-3250c1a4f7fe0d6b3f48c0465301ffc8a6e7ac42e1fbc406d267c69fdaa118c03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479405700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sat Nov 29 08:03:10 EST 2025 Wed Aug 27 02:03:23 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c220t-3250c1a4f7fe0d6b3f48c0465301ffc8a6e7ac42e1fbc406d267c69fdaa118c03 |
| ORCID | 0000-0002-7014-2149 0009-0001-8787-9606 0009-0005-6966-1274 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10937166 crossref_primary_10_1109_TASE_2025_3553745 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 Jachimowski (ref29) 2013; 4 ref32 Yong (ref25) 2023; 32 ref17 ref39 ref16 ref38 ref19 Eisenbeiss (ref6) 2004; 36 ref18 (ref2) 2018 ref24 ref23 ref26 ref20 ref41 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 (ref1) 2023 ref5 ref40 |
| References_xml | – ident: ref7 doi: 10.1109/robot.2007.363883 – ident: ref41 doi: 10.3390/drones8020052 – ident: ref17 doi: 10.2514/1.I011202 – ident: ref4 doi: 10.1109/tase.2021.3062154 – ident: ref28 doi: 10.1016/j.cor.2018.11.005 – volume-title: Electricity Market Report 2023 year: 2023 ident: ref1 – ident: ref27 doi: 10.1109/TSMC.2018.2861879 – ident: ref34 doi: 10.1109/TASE.2022.3182057 – ident: ref20 doi: 10.1016/j.ijpe.2018.07.016 – ident: ref37 doi: 10.1016/j.ejor.2017.10.017 – ident: ref5 doi: 10.1109/tase.2022.3175565 – ident: ref18 doi: 10.1016/S0377-2217(97)00290-7 – ident: ref8 doi: 10.1109/isie.2007.4374920 – ident: ref35 doi: 10.1109/TII.2021.3131195 – ident: ref23 doi: 10.1016/j.knosys.2018.07.024 – ident: ref14 doi: 10.1007/s10846-018-0914-5 – ident: ref15 doi: 10.1109/JIOT.2020.2999083 – ident: ref39 doi: 10.1109/TITS.2022.3215084 – ident: ref40 doi: 10.1109/TASE.2024.3358894 – ident: ref26 doi: 10.1016/j.proeng.2011.08.630 – ident: ref30 doi: 10.1016/j.trc.2023.104407 – ident: ref36 doi: 10.1007/s11370-022-00452-4 – ident: ref12 doi: 10.3389/fenrg.2021.713634 – volume-title: Lost in Transmission: World’s Biggest Machine Needs Update year: 2018 ident: ref2 – volume: 36 start-page: 1 issue: 5 year: 2004 ident: ref6 article-title: A mini unmanned aerial vehicle (UAV): System overview and image acquisition publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. – ident: ref21 doi: 10.1109/TASE.2022.3213254 – ident: ref31 doi: 10.1080/24725854.2022.2060535 – ident: ref19 doi: 10.1109/TEVC.2014.2362558 – ident: ref9 doi: 10.1109/TPWRD.2009.2035427 – ident: ref11 doi: 10.12677/SG.2015.53018 – ident: ref32 doi: 10.1016/j.ejor.2024.02.010 – ident: ref33 doi: 10.1109/TASE.2018.2868471 – volume: 4 start-page: 195 year: 2013 ident: ref29 article-title: Simulated annealing algorithm for the multi-level vehicle routing problem publication-title: Logistyka – ident: ref3 doi: 10.1016/j.ijepes.2017.12.016 – ident: ref22 doi: 10.1007/s00291-012-0289-0 – ident: ref10 doi: 10.1109/MELCON.2014.6820566 – ident: ref13 doi: 10.1016/j.ijepes.2023.108982 – ident: ref16 doi: 10.1109/TII.2018.2794320 – ident: ref38 doi: 10.1109/PIMRC56721.2023.10293957 – ident: ref24 doi: 10.1016/j.ejor.2020.01.008 – volume: 32 start-page: 215 issue: 2 year: 2023 ident: ref25 article-title: Open-closed hybrid vehicle routing optimization of multi-center joint distribution publication-title: J. Syst. Manage. |
| SSID | ssj0024890 |
| Score | 2.3895278 |
| Snippet | The assignment and scheduling of AAV power inspection tasks constitute a representative Mixed-Integer Nonlinear Programming (MINLP) problem. However, due to... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 14108 |
| SubjectTerms | Adaptation models adaptive clustering optimization Autonomous aerial vehicles Clustering algorithms Costs Drones Inspection Manuals mixed integer nonlinear programming model Poles and towers Power grids power inspection Routing task assignment |
| Title | Rolling Dispatch for AAVs Inspection Based on Task Adaptive Clustering |
| URI | https://ieeexplore.ieee.org/document/10937166 |
| Volume | 22 |
| WOSCitedRecordID | wos001479405700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5s8aAHnxXriz14EtKmSfaRY6wtClIEa-ktbPcBxZKWPvz9zm4i5uLB27JkYfkG9puZzfctwL2KImUpnwXILhEWKKkIJDM2EEhVjJk4Nd6-ePLKRyMxnaZvlVjda2GMMf7nM9NxQ3-Xr5dq51plXWd9hPk9a0CDc1aKtX6N9YRvqLiUIKAppdUVJq7pjrP3AZaCEe0gu8bcSZdqJFR7VcWTyvD4n9s5gaMqeyRZGe5T2DPFGRzWPAXPYVjZbJOnOR4WGBOCaSnJssmGvBSlrnJZkEckL01wMJabT5JpuXLHHukvds44AZe34GM4GPefg-qxhADhDrdBjLmM6snEcmtCzWaxTYQKnXta2LNWCYwAlyqJTM_OFLK4jhhXLLVaSqwxVBhfQLNYFuYSCKU6xnmqMFlzgiohmNSCCxkbx2dJGx5-0MtXpSdG7muJMM0d1LmDOq-gbkPLIVf7sATt6o_5azhwy8suxw00t-uduYV99bWdb9Z3PuTf-lGn8w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBZ8X63IMnIW2aZJPNMdaWFmsRjKW3sN0HFCUtffj7nd1EzMWDt2XJhvAN7PfNbOZbgHvheULTaOogu3iYoMTM4aHSDkOqCkPlx8raF4-H0WjEJpP4tWxWt70wSin785lqmqE9y5dzsTGlspaxPkJ9H27DDg0Czy3atX6t9ZgtqRhR4NCY0vIQE1e10uSti8mgR5vIr35kmpcqNFS5V8XSSu_onx90DIelfiRJEfAT2FL5KRxUXAXPoFcabZOnGW4XGBWCwpQkyXhFBnnRWTnPySPSlyQ4SPnqgySSL8zGRzqfG2OdgMvr8N7rpp2-U16X4CDg7trxUc2INg90pJUrw6mvAyZc45_mtrUWDGMQcRF4qq2nAnlcemEkwlhLzjHLEK5_DrV8nqsLIJRKH-epQLlmWqoYC7lkEeO-MowWNODhB71sUbhiZDabcOPMQJ0ZqLMS6gbUDXKVBwvQLv-Yv4O9fvoyzIaD0fMV7JtXFTWPa6itlxt1A7viaz1bLW9t-L8B6TOrOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rolling+Dispatch+for+AAVs+Inspection+Based+on+Task+Adaptive+Clustering&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Ren%2C+Jize&rft.au=Song%2C+Nanfeng&rft.au=Li%2C+Xian&rft.au=Wang%2C+Lei&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=14108&rft.epage=14119&rft_id=info:doi/10.1109%2FTASE.2025.3553745&rft.externalDocID=10937166 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |