Rolling Dispatch for AAVs Inspection Based on Task Adaptive Clustering

The assignment and scheduling of AAV power inspection tasks constitute a representative Mixed-Integer Nonlinear Programming (MINLP) problem. However, due to the complexity of the workflow, manual methods and existing heuristics struggle to balance time costs and solution quality for large-scale task...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering Jg. 22; S. 14108 - 14119
Hauptverfasser: Ren, Jize, Song, Nanfeng, Li, Xian, Wang, Lei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 2025
Schlagworte:
ISSN:1545-5955, 1558-3783
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The assignment and scheduling of AAV power inspection tasks constitute a representative Mixed-Integer Nonlinear Programming (MINLP) problem. However, due to the complexity of the workflow, manual methods and existing heuristics struggle to balance time costs and solution quality for large-scale tasks. To address this challenge, this paper introduces a rolling window approach for batch processing and proposes a clustering strategy before scheduling. Building on this strategy, we develop a rolling dispatch algorithm utilizing task-adaptive clustering (RDA-TAC), which alleviates problem complexity and enhances search efficiency. Specifically, we present a novel MINLP model designed to minimize total equivalent endurance losses, incorporating multi-level and sequential inspection constraints derived from actual inspection processes. We then batch and segment large-scale tasks, treating task fragments as the smallest units for assignment, and adaptively adjust them to convert the problem into a single-drone path planning task. Through nine scenarios based on real power grid data, RDA-TAC attains optimal solutions for small-scale tasks and outperforms manual and heuristic methods in more complex cases, demonstrating a tenfold increase in solving speed. Note to Practitioners-Autonomous aerial vehicles (AAVs) are the leading method for power line inspection, offering rapid deployment, cost-effectiveness, and improved safety. However, traditional manual assignment and path planning algorithms often struggle with large-scale and complex tasks. To address this, we propose a strategy that clusters tasks before scheduling, reducing complexity and improving efficiency. Empirical validation demonstrates that our method balances solution time and quality effectively. Comparative results are included in the attached digital format.
AbstractList The assignment and scheduling of AAV power inspection tasks constitute a representative Mixed-Integer Nonlinear Programming (MINLP) problem. However, due to the complexity of the workflow, manual methods and existing heuristics struggle to balance time costs and solution quality for large-scale tasks. To address this challenge, this paper introduces a rolling window approach for batch processing and proposes a clustering strategy before scheduling. Building on this strategy, we develop a rolling dispatch algorithm utilizing task-adaptive clustering (RDA-TAC), which alleviates problem complexity and enhances search efficiency. Specifically, we present a novel MINLP model designed to minimize total equivalent endurance losses, incorporating multi-level and sequential inspection constraints derived from actual inspection processes. We then batch and segment large-scale tasks, treating task fragments as the smallest units for assignment, and adaptively adjust them to convert the problem into a single-drone path planning task. Through nine scenarios based on real power grid data, RDA-TAC attains optimal solutions for small-scale tasks and outperforms manual and heuristic methods in more complex cases, demonstrating a tenfold increase in solving speed. Note to Practitioners-Autonomous aerial vehicles (AAVs) are the leading method for power line inspection, offering rapid deployment, cost-effectiveness, and improved safety. However, traditional manual assignment and path planning algorithms often struggle with large-scale and complex tasks. To address this, we propose a strategy that clusters tasks before scheduling, reducing complexity and improving efficiency. Empirical validation demonstrates that our method balances solution time and quality effectively. Comparative results are included in the attached digital format.
Author Wang, Lei
Ren, Jize
Li, Xian
Song, Nanfeng
Author_xml – sequence: 1
  givenname: Jize
  orcidid: 0009-0001-8787-9606
  surname: Ren
  fullname: Ren, Jize
  email: sy2203116@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Nanfeng
  orcidid: 0009-0005-6966-1274
  surname: Song
  fullname: Song, Nanfeng
  email: sy2303116@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Xian
  surname: Li
  fullname: Li, Xian
  email: lixian@qdu.edu.cn
  organization: School of Automation, Qingdao University, Qingdao, Shandong, China
– sequence: 4
  givenname: Lei
  orcidid: 0000-0002-7014-2149
  surname: Wang
  fullname: Wang, Lei
  email: lwang@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
BookMark eNpNkM1Kw0AUhQepYFt9AMHFvEDind8ky1hbLRQEjW7DdHJHozEJM1Ho25vQLlydszjfWXwLMmu7Fgm5ZhAzBtltkb-sYw5cxUIpkUh1RuZMqTQSSSpmU5cqUplSF2QRwicAl2kGc7J57pqmbt_pfR16M9gP6jpP8_wt0G0berRD3bX0zgSs6FgKE75oXpl-qH-RrpqfMKAf8Uty7kwT8OqUS_K6WRerx2j39LBd5bvIcg5DJLgCy4x0iUOo9F44mVqQWglgztnUaEyMlRyZ21sJuuI6sTpzlTGMjUuxJOz4a30XgkdX9r7-Nv5QMignEeUkopxElCcRI3NzZGpE_LfPRMK0Fn8At1u5
CODEN ITASC7
Cites_doi 10.1109/robot.2007.363883
10.3390/drones8020052
10.2514/1.I011202
10.1109/tase.2021.3062154
10.1016/j.cor.2018.11.005
10.1109/TSMC.2018.2861879
10.1109/TASE.2022.3182057
10.1016/j.ijpe.2018.07.016
10.1016/j.ejor.2017.10.017
10.1109/tase.2022.3175565
10.1016/S0377-2217(97)00290-7
10.1109/isie.2007.4374920
10.1109/TII.2021.3131195
10.1016/j.knosys.2018.07.024
10.1007/s10846-018-0914-5
10.1109/JIOT.2020.2999083
10.1109/TITS.2022.3215084
10.1109/TASE.2024.3358894
10.1016/j.proeng.2011.08.630
10.1016/j.trc.2023.104407
10.1007/s11370-022-00452-4
10.3389/fenrg.2021.713634
10.1109/TASE.2022.3213254
10.1080/24725854.2022.2060535
10.1109/TEVC.2014.2362558
10.1109/TPWRD.2009.2035427
10.12677/SG.2015.53018
10.1016/j.ejor.2024.02.010
10.1109/TASE.2018.2868471
10.1016/j.ijepes.2017.12.016
10.1007/s00291-012-0289-0
10.1109/MELCON.2014.6820566
10.1016/j.ijepes.2023.108982
10.1109/TII.2018.2794320
10.1109/PIMRC56721.2023.10293957
10.1016/j.ejor.2020.01.008
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2025.3553745
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 14119
ExternalDocumentID 10_1109_TASE_2025_3553745
10937166
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-3250c1a4f7fe0d6b3f48c0465301ffc8a6e7ac42e1fbc406d267c69fdaa118c03
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001479405700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sat Nov 29 08:03:10 EST 2025
Wed Aug 27 02:03:23 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-3250c1a4f7fe0d6b3f48c0465301ffc8a6e7ac42e1fbc406d267c69fdaa118c03
ORCID 0000-0002-7014-2149
0009-0001-8787-9606
0009-0005-6966-1274
PageCount 12
ParticipantIDs ieee_primary_10937166
crossref_primary_10_1109_TASE_2025_3553745
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
Jachimowski (ref29) 2013; 4
ref32
Yong (ref25) 2023; 32
ref17
ref39
ref16
ref38
ref19
Eisenbeiss (ref6) 2004; 36
ref18
(ref2) 2018
ref24
ref23
ref26
ref20
ref41
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
(ref1) 2023
ref5
ref40
References_xml – ident: ref7
  doi: 10.1109/robot.2007.363883
– ident: ref41
  doi: 10.3390/drones8020052
– ident: ref17
  doi: 10.2514/1.I011202
– ident: ref4
  doi: 10.1109/tase.2021.3062154
– ident: ref28
  doi: 10.1016/j.cor.2018.11.005
– volume-title: Electricity Market Report 2023
  year: 2023
  ident: ref1
– ident: ref27
  doi: 10.1109/TSMC.2018.2861879
– ident: ref34
  doi: 10.1109/TASE.2022.3182057
– ident: ref20
  doi: 10.1016/j.ijpe.2018.07.016
– ident: ref37
  doi: 10.1016/j.ejor.2017.10.017
– ident: ref5
  doi: 10.1109/tase.2022.3175565
– ident: ref18
  doi: 10.1016/S0377-2217(97)00290-7
– ident: ref8
  doi: 10.1109/isie.2007.4374920
– ident: ref35
  doi: 10.1109/TII.2021.3131195
– ident: ref23
  doi: 10.1016/j.knosys.2018.07.024
– ident: ref14
  doi: 10.1007/s10846-018-0914-5
– ident: ref15
  doi: 10.1109/JIOT.2020.2999083
– ident: ref39
  doi: 10.1109/TITS.2022.3215084
– ident: ref40
  doi: 10.1109/TASE.2024.3358894
– ident: ref26
  doi: 10.1016/j.proeng.2011.08.630
– ident: ref30
  doi: 10.1016/j.trc.2023.104407
– ident: ref36
  doi: 10.1007/s11370-022-00452-4
– ident: ref12
  doi: 10.3389/fenrg.2021.713634
– volume-title: Lost in Transmission: World’s Biggest Machine Needs Update
  year: 2018
  ident: ref2
– volume: 36
  start-page: 1
  issue: 5
  year: 2004
  ident: ref6
  article-title: A mini unmanned aerial vehicle (UAV): System overview and image acquisition
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
– ident: ref21
  doi: 10.1109/TASE.2022.3213254
– ident: ref31
  doi: 10.1080/24725854.2022.2060535
– ident: ref19
  doi: 10.1109/TEVC.2014.2362558
– ident: ref9
  doi: 10.1109/TPWRD.2009.2035427
– ident: ref11
  doi: 10.12677/SG.2015.53018
– ident: ref32
  doi: 10.1016/j.ejor.2024.02.010
– ident: ref33
  doi: 10.1109/TASE.2018.2868471
– volume: 4
  start-page: 195
  year: 2013
  ident: ref29
  article-title: Simulated annealing algorithm for the multi-level vehicle routing problem
  publication-title: Logistyka
– ident: ref3
  doi: 10.1016/j.ijepes.2017.12.016
– ident: ref22
  doi: 10.1007/s00291-012-0289-0
– ident: ref10
  doi: 10.1109/MELCON.2014.6820566
– ident: ref13
  doi: 10.1016/j.ijepes.2023.108982
– ident: ref16
  doi: 10.1109/TII.2018.2794320
– ident: ref38
  doi: 10.1109/PIMRC56721.2023.10293957
– ident: ref24
  doi: 10.1016/j.ejor.2020.01.008
– volume: 32
  start-page: 215
  issue: 2
  year: 2023
  ident: ref25
  article-title: Open-closed hybrid vehicle routing optimization of multi-center joint distribution
  publication-title: J. Syst. Manage.
SSID ssj0024890
Score 2.3895278
Snippet The assignment and scheduling of AAV power inspection tasks constitute a representative Mixed-Integer Nonlinear Programming (MINLP) problem. However, due to...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 14108
SubjectTerms Adaptation models
adaptive clustering optimization
Autonomous aerial vehicles
Clustering algorithms
Costs
Drones
Inspection
Manuals
mixed integer nonlinear programming model
Poles and towers
Power grids
power inspection
Routing
task assignment
Title Rolling Dispatch for AAVs Inspection Based on Task Adaptive Clustering
URI https://ieeexplore.ieee.org/document/10937166
Volume 22
WOSCitedRecordID wos001479405700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5s8aAHnxXriz14EtImm81ucozaopciWKW3sNkHFCUtffj7ndlEzMWDt03YgfAN7Hwzm_mGkFvgBInQ0gSy5BJLN2WQZs7Bo1Gcl6WJmPHDJuRkks5m2UvTrO57Yay1_uczO8Clv8s3C73FUtkQpY-A34sO6Ugp6matX2G91BdUkBIESZYkzRUm2Ayn-esIUkGWDCC6xhJbl1pBqDVVxQeV8eE_P-eIHDTskea1u4_Jjq1OyH5LU_CUjBuZbfo4h8MCfEKBltI8f1_T56ruq1xU9B6Cl6GwmKr1B82NWuKxRx8-tyicAOY98jYeTR-egmZYQqAZCzdBDFxGR4o76WxoRBk7nuoQ1dPCyDmdKmGl0pzZyJUaorhhQmqROaMU5Bg6jM9It1pU9pzQxFmtEsmMxGlWkmfgMxEzG5YMJ6hEfXL3g16xrDUxCp9LhFmBUBcIddFA3Sc9RK61sQbt4o_3l2QPzesqxxXpblZbe0129ddmvl7deJd_A-uCqRk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQHrxPnNQ8-CZ1pmjTtY50bG84hWGVvJc0FhtKNXfz9Jm3FvfjgW1KaUL4DOd856fkOwK3lBCyUXHk8p9ylbnIvio2xUyUozXPlE1U2m-CjUTQexy91sXpZC6O1Ln8-0203LO_y1VSuXKrs3kkfWX4fbsIWo5TgqlzrV1ovKlMqjhR4LGasvsS0q-7T5LVrg0HC2ta_BtwVL625obW-KqVb6R3884MOYb_mjyipDH4EG7o4hr01VcET6NVC2-hxYo8LaxVkiSlKkvcFGhRVZeW0QA_WfSlkB6lYfKBEiZk7-FDnc-WkE-zyJrz1ummn79XtEjxJCF56gWUz0hfUcKOxCvPA0Ehip5-GfWNkJELNhaRE-yaX1o8rEnIZxkYJYaMMiYNTaBTTQp8BYkZLwThR3PWz4jS2VgsDonFOXA8VvwV3P-hls0oVIyujCRxnDurMQZ3VULeg6ZBbe7EC7fyP5zew00-fh9lwMHq6gF23VZXzuITGcr7SV7Atv5aTxfy6NP836bqsYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rolling+Dispatch+for+AAVs+Inspection+Based+on+Task+Adaptive+Clustering&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Ren%2C+Jize&rft.au=Song%2C+Nanfeng&rft.au=Li%2C+Xian&rft.au=Wang%2C+Lei&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=14108&rft.epage=14119&rft_id=info:doi/10.1109%2FTASE.2025.3553745&rft.externalDocID=10937166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon