BOSC: A Backdoor-Based Framework for Open Set Synthetic Image Attribution

With the continuous progress of AI technology, new generative architectures continuously appear, thus driving the attention of researchers towards the development of synthetic image attribution methods capable of working in open-set scenarios. Existing approaches focus on extracting highly discrimin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security Vol. 20; pp. 8043 - 8058
Main Authors: Wang, Jun, Tondi, Benedetta, Barni, Mauro
Format: Journal Article
Language:English
Published: IEEE 2025
Subjects:
ISSN:1556-6013, 1556-6021
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the continuous progress of AI technology, new generative architectures continuously appear, thus driving the attention of researchers towards the development of synthetic image attribution methods capable of working in open-set scenarios. Existing approaches focus on extracting highly discriminative features for closed-set architectures, increasing the confidence of the prediction when the samples come from closed-set models/architectures, or estimating the distribution of unknown samples, i.e., samples from unknown architectures. In this paper, we propose a novel framework for open set attribution of synthetic images, named BOSC (Backdoor-based Open Set Classification), that relies on backdoor injection to design a classifier with rejection option. BOSC works by deliberately including class-specific triggers inside a portion of the images in the training set to induce the network to establish a matching between in-set class features and trigger features. The behavior of the trained model with respect to samples containing a trigger is then exploited at inference time to perform sample rejection using an ad-hoc score. Experiments show that the proposed method has good performance, always surpassing the state-of-the-art. Robustness against image processing is also very good. Although we designed our method for the task of synthetic image attribution, the proposed framework is a general one and can be used for other image forensic applications.
AbstractList With the continuous progress of AI technology, new generative architectures continuously appear, thus driving the attention of researchers towards the development of synthetic image attribution methods capable of working in open-set scenarios. Existing approaches focus on extracting highly discriminative features for closed-set architectures, increasing the confidence of the prediction when the samples come from closed-set models/architectures, or estimating the distribution of unknown samples, i.e., samples from unknown architectures. In this paper, we propose a novel framework for open set attribution of synthetic images, named BOSC (Backdoor-based Open Set Classification), that relies on backdoor injection to design a classifier with rejection option. BOSC works by deliberately including class-specific triggers inside a portion of the images in the training set to induce the network to establish a matching between in-set class features and trigger features. The behavior of the trained model with respect to samples containing a trigger is then exploited at inference time to perform sample rejection using an ad-hoc score. Experiments show that the proposed method has good performance, always surpassing the state-of-the-art. Robustness against image processing is also very good. Although we designed our method for the task of synthetic image attribution, the proposed framework is a general one and can be used for other image forensic applications.
Author Barni, Mauro
Wang, Jun
Tondi, Benedetta
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-0936-7904
  surname: Wang
  fullname: Wang, Jun
  email: wangjunsdnu@gmail.com
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
– sequence: 2
  givenname: Benedetta
  orcidid: 0000-0002-7518-046X
  surname: Tondi
  fullname: Tondi, Benedetta
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
– sequence: 3
  givenname: Mauro
  orcidid: 0000-0002-7368-0866
  surname: Barni
  fullname: Barni, Mauro
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
BookMark eNpFkM1OwkAUhScGEwF9ABMX8wLFufPTad1BI9qEpIviupkpd7QiHTIdY3h7IRBdnbM431l8EzLqfY-E3AObAbD8cV0u6xlnXM2EyrkScEXGoFSapIzD6K-DuCGTYfhkTEpIszEpF1VdPNE5XZh2u_E-JAsz4IYug9nhjw9b6nyg1R57WmOk9aGPHxi7lpY78450HmPo7HfsfH9Lrp35GvDuklPytnxeF6_Jqnopi_kqaTlnMRGgLecgHHArkXHTOuushkxJzNGhtpnjSrvUKtQO8yzPhGy1ZDlwyYUVUwLn3zb4YQjomn3odiYcGmDNyUVzctGcXDQXF0fm4cx0iPi_P46VFpn4BT4KW3g
CODEN ITIFA6
Cites_doi 10.1109/ICCV51070.2023.01909
10.1016/j.inffus.2020.06.014
10.1109/CVPR46437.2021.01268
10.1007/978-3-031-19781-9_9
10.1109/WIFS47025.2019.9035107
10.1109/TPAMI.2024.3350004
10.1609/aaai.v36i4.20391
10.1109/MIPR.2019.00103
10.1109/ICCV48922.2021.01383
10.1109/TPAMI.2022.3200384
10.1109/CVPR.2019.00241
10.1109/CVPR42600.2020.00813
10.48550/ARXIV.2106.12423
10.1109/CVPR42600.2020.01349
10.1109/TIT.1970.1054406
10.1016/j.patrec.2024.03.002
10.1109/IOLTS56730.2022.9897805
10.1109/ACCESS.2022.3151186
10.1109/ICASSP49357.2023.10094861
10.1109/CVPR42600.2020.00821
10.1109/CVPR.2019.00414
10.1109/ICCV48922.2021.01418
10.1109/CVPR.2019.00453
10.1109/ICCV48922.2021.00209
10.1007/978-3-030-58580-8_30
10.1109/CVPR52729.2023.01522
10.5244/C.31.42
10.1109/OJSP.2022.3190213
10.1109/CVPR52688.2022.01042
10.1109/ICCV.2015.425
10.1109/TPAMI.2012.256
10.1007/978-3-031-19806-9_21
10.1109/ICCV.2019.00765
10.1145/3544777
10.1609/aaai.v38i6.28385
10.1109/CVPR.2018.00366
10.1109/TPAMI.2021.3106743
10.1109/CVPRW59228.2023.00102
10.1109/CVPR42600.2020.00926
10.1504/IJMIC.2008.020996
10.1109/TNNLS.2022.3231924
10.48550/arXiv.1703.10717
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIFS.2025.3592531
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 8058
ExternalDocumentID 10_1109_TIFS_2025_3592531
11095738
Genre orig-research
GrantInformation_xml – fundername: FOSTERER Project through Italian Ministry within the PRIN 2022 Program
  grantid: 202289RHHP
– fundername: Security and Rights in the CyberSpace (SERICS) under the Ministero dell'Università e della Ricerca (MUR) National Recovery and Resilience Plan through European Union—NextGenerationEU
  grantid: PE00000014
– fundername: Remedy Project—New-Frontiers (PSR 2024) through MUR
– fundername: China Scholarship Council (CSC)
  grantid: 202008370186
  funderid: 10.13039/501100004543
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-317b2213f12b4e02acfbfb71854e9efe7b8f257f6b5e7fe989834c740912423b3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001547648600016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-6013
IngestDate Sat Nov 29 07:38:49 EST 2025
Sun Sep 28 03:48:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-317b2213f12b4e02acfbfb71854e9efe7b8f257f6b5e7fe989834c740912423b3
ORCID 0000-0002-0936-7904
0000-0002-7518-046X
0000-0002-7368-0866
PageCount 16
ParticipantIDs crossref_primary_10_1109_TIFS_2025_3592531
ieee_primary_11095738
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
Yang (ref44) 2023
ref15
ref59
ref14
ref58
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref18
Yang (ref38) 2021
ref51
ref50
Gu (ref23) 2017
Liu (ref27)
ref45
ref48
ref42
ref41
Zhang (ref46)
Busbridge (ref57)
Frank (ref39)
Karras (ref56)
ref8
Brock (ref47)
ref9
ref3
ref6
ref5
ref40
ref35
ref34
Kim (ref36)
ref31
ref30
ref33
Yu (ref37) 2020
ref32
Ho (ref7); 33
ref2
ref1
Karras (ref49)
Fang (ref43) 2023
Vahdat (ref52)
ref24
ref26
ref25
Vahdat (ref4)
ref20
ref22
ref21
ref28
Vaze (ref19)
ref60
Wang (ref29)
References_xml – ident: ref41
  doi: 10.1109/ICCV51070.2023.01909
– volume: 33
  start-page: 6840
  volume-title: Proc. NIPS
  ident: ref7
  article-title: Denoising diffusion probabilistic models
– start-page: 3247
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref39
  article-title: Leveraging frequency analysis for deep fake image recognition
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref46
  article-title: Mixup: Beyond empirical risk minimization
– ident: ref2
  doi: 10.1016/j.inffus.2020.06.014
– start-page: 19667
  volume-title: Proc. 34th Int. Conf. Neural Inf. Process. Syst.
  ident: ref4
  article-title: NVAE: A deep hierarchical variational autoencoder
– ident: ref53
  doi: 10.1109/CVPR46437.2021.01268
– ident: ref15
  doi: 10.1007/978-3-031-19781-9_9
– start-page: 1
  volume-title: Proc. InInternational Conf. Learn. Represent.
  ident: ref36
  article-title: Decentralized attribution of generative models
– ident: ref8
  doi: 10.1109/WIFS47025.2019.9035107
– ident: ref1
  doi: 10.1109/TPAMI.2024.3350004
– ident: ref14
  doi: 10.1609/aaai.v36i4.20391
– ident: ref11
  doi: 10.1109/MIPR.2019.00103
– ident: ref40
  doi: 10.1109/ICCV48922.2021.01383
– ident: ref17
  doi: 10.1109/TPAMI.2022.3200384
– ident: ref33
  doi: 10.1109/CVPR.2019.00241
– ident: ref5
  doi: 10.1109/CVPR42600.2020.00813
– ident: ref6
  doi: 10.48550/ARXIV.2106.12423
– ident: ref34
  doi: 10.1109/CVPR42600.2020.01349
– ident: ref26
  doi: 10.1109/TIT.1970.1054406
– ident: ref45
  doi: 10.1016/j.patrec.2024.03.002
– ident: ref25
  doi: 10.1109/IOLTS56730.2022.9897805
– ident: ref3
  doi: 10.1109/ACCESS.2022.3151186
– ident: ref10
  doi: 10.1109/ICASSP49357.2023.10094861
– ident: ref50
  doi: 10.1109/CVPR42600.2020.00821
– ident: ref32
  doi: 10.1109/CVPR.2019.00414
– year: 2017
  ident: ref23
  article-title: BadNets: Identifying vulnerabilities in the machine learning model supply chain
  publication-title: arXiv:1708.06733
– ident: ref13
  doi: 10.1109/ICCV48922.2021.01418
– ident: ref54
  doi: 10.1109/CVPR.2019.00453
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref57
  article-title: How to scale your EMA
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref19
  article-title: Open-set recognition: A good closed-set classifier is all you need
– start-page: 12104
  volume-title: Proc. 34th Int. Conf. Neural Inf. Process. Syst.
  ident: ref56
  article-title: Training generative adversarial networks with limited data
– ident: ref59
  doi: 10.1109/ICCV48922.2021.00209
– ident: ref31
  doi: 10.1007/978-3-030-58580-8_30
– ident: ref42
  doi: 10.1109/CVPR52729.2023.01522
– start-page: 25033
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref29
  article-title: OpenAUC: Towards AUC-oriented open-set recognition
– ident: ref20
  doi: 10.5244/C.31.42
– ident: ref22
  doi: 10.1109/OJSP.2022.3190213
– year: 2021
  ident: ref38
  article-title: Learning to disentangle GAN fingerprint for fake image attribution
  publication-title: arXiv:2106.08749
– ident: ref51
  doi: 10.1109/CVPR52688.2022.01042
– ident: ref55
  doi: 10.1109/ICCV.2015.425
– ident: ref24
  doi: 10.1109/TPAMI.2012.256
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref47
  article-title: Large scale GAN training for high fidelity natural image synthesis
– ident: ref21
  doi: 10.1007/978-3-031-19806-9_21
– start-page: 21464
  volume-title: Proc. 34th Int. Conf. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Energy-based out-of-distribution detection
– year: 2023
  ident: ref44
  article-title: Model synthesis for zero-shot model attribution
  publication-title: arXiv:2307.15977
– ident: ref12
  doi: 10.1109/ICCV.2019.00765
– start-page: 11287
  volume-title: Proc. NIPS
  ident: ref52
  article-title: Score-based generative modeling in latent space
– ident: ref60
  doi: 10.1145/3544777
– ident: ref28
  doi: 10.1609/aaai.v38i6.28385
– ident: ref30
  doi: 10.1109/CVPR.2018.00366
– year: 2020
  ident: ref37
  article-title: Responsible disclosure of generative models using scalable fingerprinting
  publication-title: arXiv:2012.08726
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref49
  article-title: Progressive growing of GANs for improved quality, stability, and variation
– ident: ref16
  doi: 10.1109/TPAMI.2021.3106743
– ident: ref35
  doi: 10.1109/CVPRW59228.2023.00102
– ident: ref58
  doi: 10.1109/CVPR42600.2020.00926
– year: 2023
  ident: ref43
  article-title: Open set synthetic image source attribution
  publication-title: arXiv:2308.11557
– ident: ref9
  doi: 10.1504/IJMIC.2008.020996
– ident: ref18
  doi: 10.1109/TNNLS.2022.3231924
– ident: ref48
  doi: 10.48550/arXiv.1703.10717
SSID ssj0044168
Score 2.4215152
Snippet With the continuous progress of AI technology, new generative architectures continuously appear, thus driving the attention of researchers towards the...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 8043
SubjectTerms Analytical models
Autoencoders
backdoor injection
Computer architecture
deep learning for multimedia forensics
Facial features
Feature extraction
Image forensics
Image recognition
open set recognition
Prototypes
Robustness
Synthetic image attribution
Training
Title BOSC: A Backdoor-Based Framework for Open Set Synthetic Image Attribution
URI https://ieeexplore.ieee.org/document/11095738
Volume 20
WOSCitedRecordID wos001547648600016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1556-6021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044168
  issn: 1556-6013
  databaseCode: RIE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADhVJEeckDE5LbxHbimK2tiOhSkFKkblGc2BJCJKikSPx7znlAGRjYIstWorv4vjv77j6ErqVPg8wXhmTSSQjn2iGByzjxZZBKnvhSJ7wimxCLRbBaycemWL2qhdFaV8lnemQfq7v8rEg39qhsbLtjeoIFHdQRwq-LtVqzC7Be1715nk8gymDNFSYsGS_nYQShIPVGzJPUY-4vENpiValAJez983MO0UHjPeJJre4jtKPzPuq1zAy42ah9tL_VZvAYzacP0ewWT_A0SV-yoliTKWBXhsM2MQuD54ptagmOdImjzxy8QngDnr-CtcGT8psVa4Cewrvl7J40FAokpdQpwcIKRanLjEsV6IEmqVFGAR55XEtttFCBgU1rfOVpYbQlk2Q8FRD0udbRUuwEdfMi16cI-wqQLHE0FwkEZTCRw4h0lQQzkNEkG6KbVqbxW90pI64iDEfGVgGxVUDcKGCIBlaePxMbUZ79MX6O9uzy-uzjAnXL9UZfot30o3x-X19VP8IXxsauFA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBaq1Yn3vwJKQmm81jvbXF0GCtQir0FrLJBkRMpKaC_97ZPLQePHgLw2Y3zGTnsTszH8Alt6mb2E6qJVyPNMakrrmGyTSbuzFnkc1lxEqwCWc6dedz_lgXq5e1MFLKMvlM9tVjeZef5PFSHZVdq-6YlmO667ChoLPqcq1G8SKlqnyzLFvDOMOsLzHxpeuZ7wUYDFKrb1qcWqbxywyt4KqUZsVr__OD9mC39h_JoBL4PqzJrAPtBpuB1Fu1AzsrjQYPwB8-BKMbMiDDKH5J8nyhDdF6JcRrUrMI-q5EJZeQQBYk-MzQL8QViP-K-oYMim9crC48ebez0VirQRS0mFK9QB3rCEoNMzWoQEnQKE5FKtAiWUxymUpHuClu29QWlnRSqeAkTRY7GPYZytUS5iG0sjyTR0BsgbYs0iVzIgzLcCBDCjcER0WQ0CjpwVXD0_Ct6pURljGGzkMlgFAJIKwF0IOu4ufPwJqVx3_QL2BrPLufhBN_encC22qq6iTkFFrFYinPYDP-KJ7fF-flT_EFC5yxXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BOSC%3A+A+Backdoor-Based+Framework+for+Open+Set+Synthetic+Image+Attribution&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Wang%2C+Jun&rft.au=Tondi%2C+Benedetta&rft.au=Barni%2C+Mauro&rft.date=2025&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=20&rft.spage=8043&rft.epage=8058&rft_id=info:doi/10.1109%2FTIFS.2025.3592531&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2025_3592531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon