Contrastive Conditional Adversarial Autoencoder With Class-Specific Forces for Imbalanced Open-Set Fault Detection

In real-world industrial scenarios, fault detection faces the widely recognized challenge of data imbalance, which not only refers to the scarcity of fault data but also includes the imbalance in healthy data. This article is concerned with imbalanced open-set fault detection (IOSFD), a practical ye...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automation science and engineering Ročník 22; s. 15757 - 15767
Hlavní autoři: Zuo, Zhonglin, Meng, Tao, Li, Zheng, Zhang, Hao, Liu, Tong, Chen, Zhansheng, Pang, Zhibo
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2025
Témata:
ISSN:1545-5955, 1558-3783
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In real-world industrial scenarios, fault detection faces the widely recognized challenge of data imbalance, which not only refers to the scarcity of fault data but also includes the imbalance in healthy data. This article is concerned with imbalanced open-set fault detection (IOSFD), a practical yet challenging scenario in industrial applications where multiple healthy operating conditions and multiple fault types are imbalanced. In this article, we propose a new contrastive conditional adversarial autoencoder for IOSFD. It constructs an end-to-end unified model based on multi-class known healthy and faulty data to address the reliance of traditional methods on fault samples, while optimizing with class-specific weighted forces to ensure equal attention to imbalanced known classes. Input and feature reconstruction conditioned on operating modes are utilized to learn a compact decision plane and achieve both unknown fault detection and known data classification. Significantly, we formulate the optimization objective of conditional reconstruction based on contrastive learning and introduce adversarial training to further enhance the model's performance. The effectiveness of the proposed method is validated through real-world pipeline leak detection and Tennessee-Eastman multi-fault detection. Note to Practitioners-Existing data-driven fault detection methods often assume a balanced training dataset, where the quantities of data for various fault types and healthy conditions are roughly equal. However, in real-world industrial settings, fault data is frequently scarce, and the amount of data for different healthy operating conditions can vary significantly. This imbalance can lead to biased models that do not perform well in practice. To address this challenge and leverage the available data effectively, this paper develops a contrastive conditional adversarial autoencoder. The proposed method directly models multiple classes of known fault and healthy data to identify unknown faults, eliminating the need for unknown fault samples in model training. Additionally, the model employs class-specific weighted forces to ensure that all categories, regardless of their frequency in the training set, are given equal attention during learning. This helps to mitigate the effects of data imbalance, ensuring that the model learns from both the abundant healthy data and the sparse known fault data. The proposed approach has been validated through real-world applications, including pipeline leak detection and the Tennessee-Eastman multi-fault detection task. These case studies demonstrate the effectiveness of the method in practical settings. This technique offers a robust solution for industries where fault data is scarce and operating conditions are varied, making it a valuable tool for practitioners working with imbalanced datasets.
AbstractList In real-world industrial scenarios, fault detection faces the widely recognized challenge of data imbalance, which not only refers to the scarcity of fault data but also includes the imbalance in healthy data. This article is concerned with imbalanced open-set fault detection (IOSFD), a practical yet challenging scenario in industrial applications where multiple healthy operating conditions and multiple fault types are imbalanced. In this article, we propose a new contrastive conditional adversarial autoencoder for IOSFD. It constructs an end-to-end unified model based on multi-class known healthy and faulty data to address the reliance of traditional methods on fault samples, while optimizing with class-specific weighted forces to ensure equal attention to imbalanced known classes. Input and feature reconstruction conditioned on operating modes are utilized to learn a compact decision plane and achieve both unknown fault detection and known data classification. Significantly, we formulate the optimization objective of conditional reconstruction based on contrastive learning and introduce adversarial training to further enhance the model's performance. The effectiveness of the proposed method is validated through real-world pipeline leak detection and Tennessee-Eastman multi-fault detection. Note to Practitioners-Existing data-driven fault detection methods often assume a balanced training dataset, where the quantities of data for various fault types and healthy conditions are roughly equal. However, in real-world industrial settings, fault data is frequently scarce, and the amount of data for different healthy operating conditions can vary significantly. This imbalance can lead to biased models that do not perform well in practice. To address this challenge and leverage the available data effectively, this paper develops a contrastive conditional adversarial autoencoder. The proposed method directly models multiple classes of known fault and healthy data to identify unknown faults, eliminating the need for unknown fault samples in model training. Additionally, the model employs class-specific weighted forces to ensure that all categories, regardless of their frequency in the training set, are given equal attention during learning. This helps to mitigate the effects of data imbalance, ensuring that the model learns from both the abundant healthy data and the sparse known fault data. The proposed approach has been validated through real-world applications, including pipeline leak detection and the Tennessee-Eastman multi-fault detection task. These case studies demonstrate the effectiveness of the method in practical settings. This technique offers a robust solution for industries where fault data is scarce and operating conditions are varied, making it a valuable tool for practitioners working with imbalanced datasets.
Author Li, Zheng
Pang, Zhibo
Meng, Tao
Liu, Tong
Chen, Zhansheng
Zhang, Hao
Zuo, Zhonglin
Author_xml – sequence: 1
  givenname: Zhonglin
  orcidid: 0000-0001-6283-1668
  surname: Zuo
  fullname: Zuo, Zhonglin
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Tao
  orcidid: 0000-0001-7871-0457
  surname: Meng
  fullname: Meng, Tao
  email: mengtao@zju.edu.cn
  organization: School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Zheng
  orcidid: 0000-0001-6953-6768
  surname: Li
  fullname: Li, Zheng
  organization: School of Automation, Chongqing University, Chongqing, China
– sequence: 4
  givenname: Hao
  orcidid: 0000-0002-4036-7961
  surname: Zhang
  fullname: Zhang, Hao
  organization: School of Automation, Chongqing University, Chongqing, China
– sequence: 5
  givenname: Tong
  surname: Liu
  fullname: Liu, Tong
  email: t.liu@sheffield.ac.uk
  organization: Department of Computer Science, The University of Sheffield, Sheffield, U.K
– sequence: 6
  givenname: Zhansheng
  surname: Chen
  fullname: Chen, Zhansheng
  organization: Shanghai Aerospace Space Technology Company Ltd., Shanghai, China
– sequence: 7
  givenname: Zhibo
  orcidid: 0000-0002-7474-4294
  surname: Pang
  fullname: Pang, Zhibo
  organization: Department of Automation Technology, ABB Corporate Research Sweden, Västerås, Sweden
BookMark eNpFkNFqwjAUhsNwMHV7gMEu8gJ1J02TppfS6SYIXujYZUnTU5ZRG0misLdfi8Kuznfg_D-cb0YmveuRkGcGC8ageD0s96tFCqlYcJED5PkdmTIhVMJzxScjZyIRhRAPZBbCD0CaqQKmxJeuj16HaC9IB25stK7XHV02F_RBezvyOTrsjWvQ0y8bv2nZ6RCS_QmNba2ha-cNBto6TzfHWne6N9jQ3Qn7ZI-RrvW5i_QNI5qx_JHct7oL-HSbc_K5Xh3Kj2S7e9-Uy21i0hRikhpR8yIXUspCMTVsRY3cSMzAFAKarMk4MlEDb6XG4VU0tcy1UVC3eYuKzwm79hrvQvDYVidvj9r_VgyqUVo1SqtGadVN2pB5uWYsIv7fM4AMJOd_251saQ
CODEN ITASC7
Cites_doi 10.1016/j.compind.2024.104102
10.1109/TIE.2023.3294645
10.1007/978-3-030-58621-8_45
10.1109/CVPR.2019.00241
10.1109/TII.2022.3149935
10.1109/TII.2023.3275696
10.1016/0098-1354(93)80018-I
10.1109/TII.2020.3046566
10.1109/CVPR.2017.463
10.1109/TNNLS.2020.2980749
10.5555/3524938.3525087
10.1109/TIM.2022.3196436
10.1016/j.patcog.2020.107706
10.1109/CVPR.2019.00949
10.1016/j.ress.2021.108126
10.1109/TASE.2019.2957232
10.1109/TPAMI.2022.3200384
10.1109/TASE.2022.3149591
10.1109/TMECH.2022.3179289
10.5220/0007364500002108
10.1109/TR.2022.3214519
10.1109/TCYB.2025.3531494
10.1145/1390156.1390294
10.1145/3097983.3098052
10.1109/TASE.2021.3138925
10.1109/TPAMI.2014.2321392
10.1007/978-3-030-20893-6_39
10.1109/TASE.2023.3322156
10.1109/TII.2020.2988208
10.1109/TMECH.2021.3058147
10.1109/TIE.2022.3194654
10.1109/tase.2024.3417208
10.1109/TII.2021.3112504
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2025.3570077
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 15767
ExternalDocumentID 10_1109_TASE_2025_3570077
11004063
Genre orig-research
GrantInformation_xml – fundername: Zhejiang Provincial Outstanding Youth Science Foundation of China
  grantid: LR24F030001
  funderid: 10.13039/501100017623
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-2c5b39756669818c5b9be3c6e40c950d4d43e15b03f6ae558ecb67ac80bf7fe83
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499531700016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sat Nov 29 07:47:41 EST 2025
Wed Aug 27 01:49:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-2c5b39756669818c5b9be3c6e40c950d4d43e15b03f6ae558ecb67ac80bf7fe83
ORCID 0000-0002-4036-7961
0000-0002-7474-4294
0000-0001-6283-1668
0000-0001-6953-6768
0000-0001-7871-0457
PageCount 11
ParticipantIDs crossref_primary_10_1109_TASE_2025_3570077
ieee_primary_11004063
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref16
Rifai (ref25)
ref18
Ruff (ref19)
ref24
ref23
ref26
ref20
ref22
ref21
van den Oord (ref32) 2018
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Wang (ref36); 119
References_xml – ident: ref8
  doi: 10.1016/j.compind.2024.104102
– ident: ref29
  doi: 10.1109/TIE.2023.3294645
– ident: ref33
  doi: 10.1007/978-3-030-58621-8_45
– ident: ref11
  doi: 10.1109/CVPR.2019.00241
– ident: ref16
  doi: 10.1109/TII.2022.3149935
– ident: ref7
  doi: 10.1109/TII.2023.3275696
– ident: ref37
  doi: 10.1016/0098-1354(93)80018-I
– ident: ref13
  doi: 10.1109/TII.2020.3046566
– ident: ref30
  doi: 10.1109/CVPR.2017.463
– ident: ref26
  doi: 10.1109/TNNLS.2020.2980749
– ident: ref31
  doi: 10.5555/3524938.3525087
– year: 2018
  ident: ref32
  article-title: Representation learning with contrastive predictive coding
  publication-title: arXiv:1807.03748
– ident: ref21
  doi: 10.1109/TIM.2022.3196436
– ident: ref24
  doi: 10.1016/j.patcog.2020.107706
– volume: 119
  start-page: 9929
  volume-title: Proc. 37th Int. Conf. Mach. Learn.
  ident: ref36
  article-title: Understanding contrastive representation learning through alignment and uniformity on the hypersphere
– ident: ref15
  doi: 10.1109/CVPR.2019.00949
– ident: ref34
  doi: 10.1016/j.ress.2021.108126
– ident: ref1
  doi: 10.1109/TASE.2019.2957232
– ident: ref10
  doi: 10.1109/TPAMI.2022.3200384
– ident: ref3
  doi: 10.1109/TASE.2022.3149591
– ident: ref35
  doi: 10.1109/TMECH.2022.3179289
– ident: ref28
  doi: 10.5220/0007364500002108
– ident: ref14
  doi: 10.1109/TR.2022.3214519
– ident: ref17
  doi: 10.1109/TCYB.2025.3531494
– ident: ref22
  doi: 10.1145/1390156.1390294
– ident: ref23
  doi: 10.1145/3097983.3098052
– ident: ref4
  doi: 10.1109/TASE.2021.3138925
– ident: ref9
  doi: 10.1109/TPAMI.2014.2321392
– start-page: 833
  volume-title: Proc. 28th Int. Conf. Mach. Learn. (ICML)
  ident: ref25
  article-title: Contractive auto-encoders: Explicit invariance during feature extraction
– ident: ref18
  doi: 10.1007/978-3-030-20893-6_39
– ident: ref20
  doi: 10.1109/TASE.2023.3322156
– ident: ref6
  doi: 10.1109/TII.2020.2988208
– start-page: 4393
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref19
  article-title: Deep one-class classification
– ident: ref27
  doi: 10.1109/TMECH.2021.3058147
– ident: ref2
  doi: 10.1109/TIE.2022.3194654
– ident: ref12
  doi: 10.1109/tase.2024.3417208
– ident: ref5
  doi: 10.1109/TII.2021.3112504
SSID ssj0024890
Score 2.3894389
Snippet In real-world industrial scenarios, fault detection faces the widely recognized challenge of data imbalance, which not only refers to the scarcity of fault...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 15757
SubjectTerms Adaptation models
Autoencoders
Automation
class-specific weighting
conditional autoencoder
Contrastive learning
Data models
Fault detection
Fault diagnosis
Feature extraction
imbalanced data
Open-set fault detection
Representation learning
Training
Title Contrastive Conditional Adversarial Autoencoder With Class-Specific Forces for Imbalanced Open-Set Fault Detection
URI https://ieeexplore.ieee.org/document/11004063
Volume 22
WOSCitedRecordID wos001499531700016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7YxAEOPIcYL-XACSlb-kgfxwlWwWVC2hC7VYnriknQoq7l95OkRRsHDtzSKpUqO7I_O_ZnQm4BNEYWuWIAJnWTgcNUzgXLI-17c41RJUZ22EQ4m0XLZfzcNavbXhhEtMVnODJLe5efldCYVNnY0ptpn9ojvTAM2matDbFeZBMqBhIwEQvRXWE6PB4vJvOpDgVdMfIMnXsY_nJCW1NVrFNJDv_5O0fkoEOPdNKq-5jsYHFC9rc4BU9JZfimKrk2ZozqdbZqs33Ujl5eS3Pg6KSpS8NgmWFFX1f1G7WzMZkdRp-vgCZlpe0H1YCWPn0oU_0ImFFTfMLmWNNENu81fcDa1nEVA_KSTBf3j6wbrMDAdXnNXBBK4xCN5IJYO2z9FCv0IECfQyx45me-h45Q3Mu1roSIEFQQSoi4ysMcI--M9IuywHNCBQShNhIqlm7m62BRAQZK-dKX6EjB3SG5-5F0-tnyZ6Q27uBxatSSGrWknVqGZGCkvNnYCfjij_eXZM983mZErki_rhq8JrvwVa_W1Y09Ht_QG7n2
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gIAEHnkOMZw6ckLJlbdPHcYJNmxgT0obYrUpcV1SCDXUdv58kLdo4cOCWVlFV2ZH92bE_E3ILoDGySBUDMKmbBNpMpVywNNS-N9UYVWJoh00Eo1E4nUbPVbO67YVBRFt8hk2ztHf5yRyWJlXWsvRm2qduki3heQ4v27VW1HqhTakYUMBEJER1idnmUWvSGXd1MOiIpmsI3YPglxtam6ti3Urv4J8_dEj2K_xIO6XCj8gGzo7J3hqr4AnJDeNULhfGkFG9TrIy30ft8OWFNEeOdpbF3HBYJpjT16x4o3Y6JrPj6NMMaG-eawtCNaSlgw9l6h8BE2rKT9gYC9qTy_eCPmBhK7lmdfLS607u-6warcDAcXjBHBBKIxGN5fxIu2z9FCl0wUePQyR44iWei22huJtqbQkRIig_kBBylQYphu4pqc3mMzwjVIAfaDOhIukkng4XFaCvlCc9iW0puNMgdz-Sjj9LBo3YRh48io1aYqOWuFJLg9SNlFcbKwGf__H-huz0J0_DeDgYPV6QXfOpMj9ySWpFvsQrsg1fRbbIr-1R-QaoyL09
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contrastive+Conditional+Adversarial+Autoencoder+With+Class-Specific+Forces+for+Imbalanced+Open-Set+Fault+Detection&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zuo%2C+Zhonglin&rft.au=Meng%2C+Tao&rft.au=Li%2C+Zheng&rft.au=Zhang%2C+Hao&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=15757&rft.epage=15767&rft_id=info:doi/10.1109%2FTASE.2025.3570077&rft.externalDocID=11004063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon