Structural Clustering of Multi-Layer Graphs
Multi-layer graphs have emerged as a new representation of multi-faceted relationships between entities in the real world. Community detection on multi-layer graphs has been investigated to gain deeper insights into the modular structures of real-world graphs. As an effective and efficient approach...
Saved in:
| Published in: | IEEE transactions on knowledge and data engineering Vol. 37; no. 9; pp. 5639 - 5653 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.09.2025
|
| Subjects: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Multi-layer graphs have emerged as a new representation of multi-faceted relationships between entities in the real world. Community detection on multi-layer graphs has been investigated to gain deeper insights into the modular structures of real-world graphs. As an effective and efficient approach to community detection, structural clustering has been investigated on single-layer graphs. However, it has been overlooked in the study of community detection on multi-layer graphs. In this paper, we give a formulation of structural clustering on multi-layer graphs for the first time. Two polynomial-time algorithms are proposed to solve the problem. Furthermore, two indexes, namely the core index and the interval index, with respective preferences to time efficiency and space efficiency, are designed to improve the efficiency of the algorithms. The experiments demonstrate the effectiveness of structural clustering in improving the quality of community detection results on multi-layer graphs. The experiments also verify the improvement in running time due to the use of the proposed indexes. |
|---|---|
| AbstractList | Multi-layer graphs have emerged as a new representation of multi-faceted relationships between entities in the real world. Community detection on multi-layer graphs has been investigated to gain deeper insights into the modular structures of real-world graphs. As an effective and efficient approach to community detection, structural clustering has been investigated on single-layer graphs. However, it has been overlooked in the study of community detection on multi-layer graphs. In this paper, we give a formulation of structural clustering on multi-layer graphs for the first time. Two polynomial-time algorithms are proposed to solve the problem. Furthermore, two indexes, namely the core index and the interval index, with respective preferences to time efficiency and space efficiency, are designed to improve the efficiency of the algorithms. The experiments demonstrate the effectiveness of structural clustering in improving the quality of community detection results on multi-layer graphs. The experiments also verify the improvement in running time due to the use of the proposed indexes. |
| Author | Zou, Zhaonian Wang, Run-An Liu, Xudong Liu, Dandan |
| Author_xml | – sequence: 1 givenname: Xudong orcidid: 0009-0003-9196-4015 surname: Liu fullname: Liu, Xudong email: xdliu@stu.hit.edu.cn organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China – sequence: 2 givenname: Zhaonian orcidid: 0000-0001-9475-8944 surname: Zou fullname: Zou, Zhaonian email: znzou@hit.edu.cn organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China – sequence: 3 givenname: Run-An orcidid: 0000-0001-9796-8955 surname: Wang fullname: Wang, Run-An email: wangrunan@stu.hit.edu.cn organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China – sequence: 4 givenname: Dandan surname: Liu fullname: Liu, Dandan email: ddliu@hit.edu.cn organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China |
| BookMark | eNpFj8FOwzAQRC1UJNrCByBxyB2l7Dp2bB9RKAURxIFyjjbuFoJCU9nJoX_fVq3EaeYwb6Q3EaNNt2EhbhFmiOAelm9P85kEqWeZNi636kKMUWubSnQ4OnRQmKpMmSsxifEXAKyxOBb3n30YfD8EapOiHWLPodl8J906eR_avklL2nFIFoG2P_FaXK6pjXxzzqn4ep4vi5e0_Fi8Fo9l6qWEPkXrNTvWKHMAqUgBWibvqJZE0nprVoqkAwKvpF7lNXqGmpRzeV0bz9lU4OnXhy7GwOtqG5o_CrsKoTraVkfb6mhbnW0PzN2JaZj5f4-Q5QZMtgd0S1Im |
| CODEN | ITKEEH |
| Cites_doi | 10.1109/TKDE.2021.3104155 10.1007/s10618-013-0331-0 10.1007/978-3-642-35879-1_23 10.14778/3611479.3611519 10.1016/j.physrep.2009.11.002 10.1145/3394486.3403069 10.1145/1281192.1281280 10.1145/2854006.2854013 10.1109/ICDE53745.2022.00257 10.14778/3570690.3570700 10.1073/pnas.122653799 10.1007/s10618-017-0528-8 10.1109/ICDE.2018.00069 10.1145/1961189.1961194 10.1109/ICDE60146.2024.00211 10.1007/s10618-017-0525-y 10.1109/TKDE.2016.2618795 10.1145/2808797.2808852 10.14778/2809974.2809980 10.1109/ICDE60146.2024.00218 10.14778/3157794.3157795 10.1145/3369872 10.14778/3402707.3402736 10.1145/800061.808753 10.1145/3444688 10.1109/ASONAM.2011.104 10.1093/comnet/cnu016 10.1103/PhysRevX.5.011027 10.1007/978-3-319-97571-9_20 10.1007/BF01935330 10.1017/nws.2016.22 10.1145/1460797.1460799 10.1109/ICDM.2009.20 10.1016/j.physrep.2013.08.002 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TKDE.2025.3579684 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 5653 |
| ExternalDocumentID | 10_1109_TKDE_2025_3579684 11036707 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62072138; 62472123 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TAF TN5 UHB VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c220t-18c5e9e51260024a4018eac9ab2aa28c87d4a290a0c425d6b1ce0ba4996bb7ce3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001547502000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sat Nov 29 07:37:54 EST 2025 Sun Sep 28 03:48:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c220t-18c5e9e51260024a4018eac9ab2aa28c87d4a290a0c425d6b1ce0ba4996bb7ce3 |
| ORCID | 0000-0001-9475-8944 0009-0003-9196-4015 0000-0001-9796-8955 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TKDE_2025_3579684 ieee_primary_11036707 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 Bródka (ref6) 2012 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 Khan (ref18) 2017 ref5 |
| References_xml | – ident: ref17 doi: 10.1109/TKDE.2021.3104155 – ident: ref3 doi: 10.1007/s10618-013-0331-0 – ident: ref5 doi: 10.1007/978-3-642-35879-1_23 – year: 2012 ident: ref6 article-title: mLFR benchmark: Testing community detection algorithms in multi–layered, multiplex and multiple social networks – ident: ref23 doi: 10.14778/3611479.3611519 – ident: ref10 doi: 10.1016/j.physrep.2009.11.002 – ident: ref24 doi: 10.1145/3394486.3403069 – ident: ref35 doi: 10.1145/1281192.1281280 – ident: ref19 doi: 10.1145/2854006.2854013 – ident: ref27 doi: 10.1109/ICDE53745.2022.00257 – ident: ref1 doi: 10.14778/3570690.3570700 – ident: ref13 doi: 10.1073/pnas.122653799 – ident: ref31 doi: 10.1007/s10618-017-0528-8 – ident: ref36 doi: 10.1109/ICDE.2018.00069 – ident: ref4 doi: 10.1145/1961189.1961194 – ident: ref22 doi: 10.1109/ICDE60146.2024.00211 – ident: ref14 doi: 10.1007/s10618-017-0525-y – ident: ref8 doi: 10.1109/TKDE.2016.2618795 – ident: ref21 doi: 10.1145/2808797.2808852 – year: 2017 ident: ref18 article-title: Network community detection: A review and visual survey – ident: ref28 doi: 10.14778/2809974.2809980 – ident: ref33 doi: 10.1109/ICDE60146.2024.00218 – ident: ref34 doi: 10.14778/3157794.3157795 – ident: ref12 doi: 10.1145/3369872 – ident: ref29 doi: 10.14778/3402707.3402736 – ident: ref11 doi: 10.1145/800061.808753 – ident: ref25 doi: 10.1145/3444688 – ident: ref2 doi: 10.1109/ASONAM.2011.104 – ident: ref20 doi: 10.1093/comnet/cnu016 – ident: ref9 doi: 10.1103/PhysRevX.5.011027 – ident: ref7 doi: 10.1007/978-3-319-97571-9_20 – ident: ref30 doi: 10.1007/BF01935330 – ident: ref15 doi: 10.1017/nws.2016.22 – ident: ref16 doi: 10.1145/1460797.1460799 – ident: ref32 doi: 10.1109/ICDM.2009.20 – ident: ref26 doi: 10.1016/j.physrep.2013.08.002 |
| SSID | ssj0008781 |
| Score | 2.4765549 |
| Snippet | Multi-layer graphs have emerged as a new representation of multi-faceted relationships between entities in the real world. Community detection on multi-layer... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 5639 |
| SubjectTerms | Artificial intelligence Bridges Clustering algorithms community detection Data mining Detection algorithms Indexes Multi-layer graph Periodic structures Proteins Social networking (online) structural clustering Training |
| Title | Structural Clustering of Multi-Layer Graphs |
| URI | https://ieeexplore.ieee.org/document/11036707 |
| Volume | 37 |
| WOSCitedRecordID | wos001547502000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1s8aAHq7Vi_WIPnoS0u9mPJEeprYJSPFTobUmysyBIK7br73eS3Wo9ePC2hE1Y3pDMvJ3MPIBrGZcC45izIuOGJalWTFFgzrJEZkgWJ49VerEJMZ3K-Vw9N8XqvhYGEf3lMxy4R5_LL5a2cr_KhuSqXL8x0YKWEFldrPV97ErhFUmJXhApihPRpDCjUA1nj3djooI8HcSu9FImv5zQlqqKdyqTzj8_5xAOmugxuK3NfQQ7uOhCZ6PMEDQbtQv7W20Gj8GlnivrG2wEo7fKtUag8WBZBr78lj1piruDe9e6etWDl8l4NnpgjUgCs5yHaxZJm6JC8tsuw5Zo4kuSDlOlDdeaSytFkWiuQh1a2p5FZiKLodFEdDJjhMX4BNqL5QJPIbDGOKGIkhYLE0NroVJoI4EmVbEuiz7cbFDL3-teGLnnEKHKHcS5gzhvIO5DzyH282ID1tkf4-ew56bX17cuoE3A4CXs2s_16-rjypv6C5MUpaE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oFNSD0zlx_uzBk5CZpmmbHGVuTjaHhwm7lSRNQZBN3Obf70va6Tx48FZCeZTvkbz3-vK-D-BaREVqo4iRPGGa8FhJIjExJwkXiUWPY8QqvNhEOhqJyUQ-V8PqfhbGWusvn9m2e_S9_Hxmlu5X2S2GKsc3lm7CVsw5o-W41vfBK1KvSYoFBpZFEU-rJmZI5e14cN_FYpDF7cgNXwr-Kwyt6ar4sNKr__ODDmC_yh-Du9Lhh7Bhpw2or7QZgmqrNmBvjWjwCFzzeWk8xUbQeVs6cgRcD2ZF4AdwyVBh5h08OPLqeRNeet1xp08qmQRiGKMLEgoTW2kxcrseG1dYMQk8TqXSTCkmjEhzrpikihrcoHmiQ2OpVljqJFqnxkbHUJvOpvYEAqO1k4oo0BjlGm1ZKa0JU6tjGakib8HNCrXsvWTDyHwVQWXmIM4cxFkFcQuaDrGfFyuwTv9Yv4Kd_vhpmA0fR4Mz2HWmystc51BDkOwFbJvPxev849K7_QtiMKjo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Clustering+of+Multi-Layer+Graphs&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Liu%2C+Xudong&rft.au=Zou%2C+Zhaonian&rft.au=Wang%2C+Run-An&rft.au=Liu%2C+Dandan&rft.date=2025-09-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=37&rft.issue=9&rft.spage=5639&rft.epage=5653&rft_id=info:doi/10.1109%2FTKDE.2025.3579684&rft.externalDocID=11036707 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |