Structural Clustering of Multi-Layer Graphs

Multi-layer graphs have emerged as a new representation of multi-faceted relationships between entities in the real world. Community detection on multi-layer graphs has been investigated to gain deeper insights into the modular structures of real-world graphs. As an effective and efficient approach...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on knowledge and data engineering Ročník 37; číslo 9; s. 5639 - 5653
Hlavní autoři: Liu, Xudong, Zou, Zhaonian, Wang, Run-An, Liu, Dandan
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.09.2025
Témata:
ISSN:1041-4347, 1558-2191
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multi-layer graphs have emerged as a new representation of multi-faceted relationships between entities in the real world. Community detection on multi-layer graphs has been investigated to gain deeper insights into the modular structures of real-world graphs. As an effective and efficient approach to community detection, structural clustering has been investigated on single-layer graphs. However, it has been overlooked in the study of community detection on multi-layer graphs. In this paper, we give a formulation of structural clustering on multi-layer graphs for the first time. Two polynomial-time algorithms are proposed to solve the problem. Furthermore, two indexes, namely the core index and the interval index, with respective preferences to time efficiency and space efficiency, are designed to improve the efficiency of the algorithms. The experiments demonstrate the effectiveness of structural clustering in improving the quality of community detection results on multi-layer graphs. The experiments also verify the improvement in running time due to the use of the proposed indexes.
AbstractList Multi-layer graphs have emerged as a new representation of multi-faceted relationships between entities in the real world. Community detection on multi-layer graphs has been investigated to gain deeper insights into the modular structures of real-world graphs. As an effective and efficient approach to community detection, structural clustering has been investigated on single-layer graphs. However, it has been overlooked in the study of community detection on multi-layer graphs. In this paper, we give a formulation of structural clustering on multi-layer graphs for the first time. Two polynomial-time algorithms are proposed to solve the problem. Furthermore, two indexes, namely the core index and the interval index, with respective preferences to time efficiency and space efficiency, are designed to improve the efficiency of the algorithms. The experiments demonstrate the effectiveness of structural clustering in improving the quality of community detection results on multi-layer graphs. The experiments also verify the improvement in running time due to the use of the proposed indexes.
Author Zou, Zhaonian
Wang, Run-An
Liu, Xudong
Liu, Dandan
Author_xml – sequence: 1
  givenname: Xudong
  orcidid: 0009-0003-9196-4015
  surname: Liu
  fullname: Liu, Xudong
  email: xdliu@stu.hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Zhaonian
  orcidid: 0000-0001-9475-8944
  surname: Zou
  fullname: Zou, Zhaonian
  email: znzou@hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Run-An
  orcidid: 0000-0001-9796-8955
  surname: Wang
  fullname: Wang, Run-An
  email: wangrunan@stu.hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Dandan
  surname: Liu
  fullname: Liu, Dandan
  email: ddliu@hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
BookMark eNpFj8FOwzAQRC1UJNrCByBxyB2l7Dp2bB9RKAURxIFyjjbuFoJCU9nJoX_fVq3EaeYwb6Q3EaNNt2EhbhFmiOAelm9P85kEqWeZNi636kKMUWubSnQ4OnRQmKpMmSsxifEXAKyxOBb3n30YfD8EapOiHWLPodl8J906eR_avklL2nFIFoG2P_FaXK6pjXxzzqn4ep4vi5e0_Fi8Fo9l6qWEPkXrNTvWKHMAqUgBWibvqJZE0nprVoqkAwKvpF7lNXqGmpRzeV0bz9lU4OnXhy7GwOtqG5o_CrsKoTraVkfb6mhbnW0PzN2JaZj5f4-Q5QZMtgd0S1Im
CODEN ITKEEH
Cites_doi 10.1109/TKDE.2021.3104155
10.1007/s10618-013-0331-0
10.1007/978-3-642-35879-1_23
10.14778/3611479.3611519
10.1016/j.physrep.2009.11.002
10.1145/3394486.3403069
10.1145/1281192.1281280
10.1145/2854006.2854013
10.1109/ICDE53745.2022.00257
10.14778/3570690.3570700
10.1073/pnas.122653799
10.1007/s10618-017-0528-8
10.1109/ICDE.2018.00069
10.1145/1961189.1961194
10.1109/ICDE60146.2024.00211
10.1007/s10618-017-0525-y
10.1109/TKDE.2016.2618795
10.1145/2808797.2808852
10.14778/2809974.2809980
10.1109/ICDE60146.2024.00218
10.14778/3157794.3157795
10.1145/3369872
10.14778/3402707.3402736
10.1145/800061.808753
10.1145/3444688
10.1109/ASONAM.2011.104
10.1093/comnet/cnu016
10.1103/PhysRevX.5.011027
10.1007/978-3-319-97571-9_20
10.1007/BF01935330
10.1017/nws.2016.22
10.1145/1460797.1460799
10.1109/ICDM.2009.20
10.1016/j.physrep.2013.08.002
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TKDE.2025.3579684
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 5653
ExternalDocumentID 10_1109_TKDE_2025_3579684
11036707
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072138; 62472123
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-18c5e9e51260024a4018eac9ab2aa28c87d4a290a0c425d6b1ce0ba4996bb7ce3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001547502000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sat Nov 29 07:37:54 EST 2025
Sun Sep 28 03:48:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-18c5e9e51260024a4018eac9ab2aa28c87d4a290a0c425d6b1ce0ba4996bb7ce3
ORCID 0000-0001-9475-8944
0009-0003-9196-4015
0000-0001-9796-8955
PageCount 15
ParticipantIDs crossref_primary_10_1109_TKDE_2025_3579684
ieee_primary_11036707
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
Bródka (ref6) 2012
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
Khan (ref18) 2017
ref5
References_xml – ident: ref17
  doi: 10.1109/TKDE.2021.3104155
– ident: ref3
  doi: 10.1007/s10618-013-0331-0
– ident: ref5
  doi: 10.1007/978-3-642-35879-1_23
– year: 2012
  ident: ref6
  article-title: mLFR benchmark: Testing community detection algorithms in multi–layered, multiplex and multiple social networks
– ident: ref23
  doi: 10.14778/3611479.3611519
– ident: ref10
  doi: 10.1016/j.physrep.2009.11.002
– ident: ref24
  doi: 10.1145/3394486.3403069
– ident: ref35
  doi: 10.1145/1281192.1281280
– ident: ref19
  doi: 10.1145/2854006.2854013
– ident: ref27
  doi: 10.1109/ICDE53745.2022.00257
– ident: ref1
  doi: 10.14778/3570690.3570700
– ident: ref13
  doi: 10.1073/pnas.122653799
– ident: ref31
  doi: 10.1007/s10618-017-0528-8
– ident: ref36
  doi: 10.1109/ICDE.2018.00069
– ident: ref4
  doi: 10.1145/1961189.1961194
– ident: ref22
  doi: 10.1109/ICDE60146.2024.00211
– ident: ref14
  doi: 10.1007/s10618-017-0525-y
– ident: ref8
  doi: 10.1109/TKDE.2016.2618795
– ident: ref21
  doi: 10.1145/2808797.2808852
– year: 2017
  ident: ref18
  article-title: Network community detection: A review and visual survey
– ident: ref28
  doi: 10.14778/2809974.2809980
– ident: ref33
  doi: 10.1109/ICDE60146.2024.00218
– ident: ref34
  doi: 10.14778/3157794.3157795
– ident: ref12
  doi: 10.1145/3369872
– ident: ref29
  doi: 10.14778/3402707.3402736
– ident: ref11
  doi: 10.1145/800061.808753
– ident: ref25
  doi: 10.1145/3444688
– ident: ref2
  doi: 10.1109/ASONAM.2011.104
– ident: ref20
  doi: 10.1093/comnet/cnu016
– ident: ref9
  doi: 10.1103/PhysRevX.5.011027
– ident: ref7
  doi: 10.1007/978-3-319-97571-9_20
– ident: ref30
  doi: 10.1007/BF01935330
– ident: ref15
  doi: 10.1017/nws.2016.22
– ident: ref16
  doi: 10.1145/1460797.1460799
– ident: ref32
  doi: 10.1109/ICDM.2009.20
– ident: ref26
  doi: 10.1016/j.physrep.2013.08.002
SSID ssj0008781
Score 2.4766312
Snippet Multi-layer graphs have emerged as a new representation of multi-faceted relationships between entities in the real world. Community detection on multi-layer...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 5639
SubjectTerms Artificial intelligence
Bridges
Clustering algorithms
community detection
Data mining
Detection algorithms
Indexes
Multi-layer graph
Periodic structures
Proteins
Social networking (online)
structural clustering
Training
Title Structural Clustering of Multi-Layer Graphs
URI https://ieeexplore.ieee.org/document/11036707
Volume 37
WOSCitedRecordID wos001547502000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH644UEPTufE-YscPAnZ0iZtkqPMTUEZHibsVpI0BUE2cat_v0ma6Tx48FZCC-ULycv3Xt73AVyTSiQsJRpboXjIVmEhGcElYYwr7igRrYLZBJ9OxXwun2OzeuiFsdaGy2d24B9DLb9cmtqnyoYuVHm9Md6CFud506z1ve0KHhxJHb1wpIgyHkuYCZHD2ePd2FHBNBtQ33op2K8gtOWqEoLKpPPP3zmEg3h6RLfNdB_Bjl10obNxZkBxoXZhf0tm8Bh86bk2QWADjd5qL43gxtGyQqH9Fj8pd-5G9166etWDl8l4NnrA0SQBmzQla5wIk1lpXdz2FTamHF8SbjOVSqdKpcIIXjKVSqKIccuzzHViLNHKEZ1ca24sPYH2Yrmwp4BCeiP3Cn80YyWlSnCuuZdw02WVZLYPNxvUivdGC6MIHILIwkNceIiLCHEfeh6xnxcjWGd_jJ_Dnv-8ub51AW0HjL2EXfO5fl19XIWp_gJj2qPg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0omqgHUcSInz14Mlnobru0ezQIYkDiARNum7bbTUgMGAF_v9Puonjw4G3TbNrmNe30zXTeANzSXIY8ojqwUgnvrQpkwmmQUc6FEkiJWO6LTYjRSE4myUuZrO5zYay1_vGZbbpPH8vP5mblXGUtNFVOb0xsw07McYQiXev74JXC1yRFgoG0iHFRBjFDmrTGg4cuksEobjKXfCn5LzO0UVfFm5Ve9Z8TOoLD8v5I7osFP4YtO6tBdV2bgZRbtQYHG0KDJ-CCzyvjJTZI523lxBGwncxz4hNwg6HCmzd5dOLVizq89rrjTj8oyyQEJoroMgiliW1i0XK7GBtXyJgkHqeJ0pFSkTRSZFxFCVXU4AbN2jo0lmqFVKettTCWnUJlNp_ZMyDewdF2Gn8s5hljSgqhhRNx01kexrYBd2vU0vdCDSP1LIImqYM4dRCnJcQNqDvEfn4swTr_o_0G9vrj52E6fBoNLmDfdVU85rqECoJkr2DXfC6ni49rv-xfHb6nJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Clustering+of+Multi-Layer+Graphs&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Liu%2C+Xudong&rft.au=Zou%2C+Zhaonian&rft.au=Wang%2C+Run-An&rft.au=Liu%2C+Dandan&rft.date=2025-09-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=37&rft.issue=9&rft.spage=5639&rft.epage=5653&rft_id=info:doi/10.1109%2FTKDE.2025.3579684&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2025_3579684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon