Novel Distributed Multimedia Recommendation Systems Using Personalized Information

In this paper, we propose a novel distributed multimedia recommendation system (DMRS) to address personalized preference by use of the matrix-sketching approach for dimensionality reduction and local information updates. Conventional recommendation systems can hardly address scalability, privacy, an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on broadcasting s. 1 - 12
Hlavní autori: Chang, Shih Yu, Wu, Hsiao-Chun, Yan, Kun, Huang, Scott Chih-Hao, Wu, Yiyan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:0018-9316, 1557-9611
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we propose a novel distributed multimedia recommendation system (DMRS) to address personalized preference by use of the matrix-sketching approach for dimensionality reduction and local information updates. Conventional recommendation systems can hardly address scalability, privacy, and robustness, all of which are very important in practice. To combat the aforementioned challenges, we propose to incorporate local information updates based on local private information at the client side to protect privacy by restricting users' data from the server and utilize the matrix-sketching scheme to further reduce the dimensionality of the global user-item interaction data so that the personalized (distributed) recommendations can be made by users' devices in local. To evaluate the system performance, we define a new robustness measure, namely ϵ-robustness, which quantifies the performance consistency of the recommendation system and involves both sketching errors and local rating updates. Furthermore, we introduce a novel randomized matrix-factorization algorithm to achieve the desired robustness while still maintaining the interaction-data fidelity in terms of normalized root-mean-square error (NRMSE). Our experimental results on both simulated and real-world data demonstrate the effectiveness of our proposed novel DMRS in attaining a good balance between the interaction-data fidelity and the system robustness subject to the privacy protection.
AbstractList In this paper, we propose a novel distributed multimedia recommendation system (DMRS) to address personalized preference by use of the matrix-sketching approach for dimensionality reduction and local information updates. Conventional recommendation systems can hardly address scalability, privacy, and robustness, all of which are very important in practice. To combat the aforementioned challenges, we propose to incorporate local information updates based on local private information at the client side to protect privacy by restricting users' data from the server and utilize the matrix-sketching scheme to further reduce the dimensionality of the global user-item interaction data so that the personalized (distributed) recommendations can be made by users' devices in local. To evaluate the system performance, we define a new robustness measure, namely ϵ-robustness, which quantifies the performance consistency of the recommendation system and involves both sketching errors and local rating updates. Furthermore, we introduce a novel randomized matrix-factorization algorithm to achieve the desired robustness while still maintaining the interaction-data fidelity in terms of normalized root-mean-square error (NRMSE). Our experimental results on both simulated and real-world data demonstrate the effectiveness of our proposed novel DMRS in attaining a good balance between the interaction-data fidelity and the system robustness subject to the privacy protection.
Author Wu, Hsiao-Chun
Huang, Scott Chih-Hao
Chang, Shih Yu
Wu, Yiyan
Yan, Kun
Author_xml – sequence: 1
  givenname: Shih Yu
  orcidid: 0000-0002-3576-0021
  surname: Chang
  fullname: Chang, Shih Yu
  email: shihyu.chang@sjsu.edu
  organization: Department of Applied Data Science, San Jose State University, San Jose, CA, USA
– sequence: 2
  givenname: Hsiao-Chun
  orcidid: 0000-0002-0178-1246
  surname: Wu
  fullname: Wu, Hsiao-Chun
  email: eceprofessorwu@gmail.com
  organization: School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA, USA
– sequence: 3
  givenname: Kun
  orcidid: 0000-0002-2811-3758
  surname: Yan
  fullname: Yan, Kun
  email: kyan5702@gmail.com
  organization: Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing and the Department of Information and Telecommunication, Guilin University of Electronic Technology, Guilin, Guangxi, China
– sequence: 4
  givenname: Scott Chih-Hao
  orcidid: 0000-0001-9896-1325
  surname: Huang
  fullname: Huang, Scott Chih-Hao
  email: chhuang@ee.nthu.edu.tw
  organization: Department of Electrical Engineering, National Tsinghua University, Hsinchu, Taiwan
– sequence: 5
  givenname: Yiyan
  orcidid: 0000-0001-8890-5389
  surname: Wu
  fullname: Wu, Yiyan
  email: yiyan.wu@ieee.org
  organization: Department of Electrical and Computer Engineering, Western University, London, ON, Canada
BookMark eNpFkMtOwzAURC1UJNrCngWL_EDCvXGc2Esor0rlodKuI9e5RkZ5IDtFKl9PSiuxms2c0ehM2KjtWmLsEiFBBHW9up0lKaQi4UJyJdUJG6MQRaxyxBEbA6CMFcf8jE1C-AQADpCO2fKl-6Y6unOh926z7amKnrd17xqqnI6WZLqmobbSveva6H0XempCtA6u_YjeyIeu1bX7GaB5azvf_NXO2anVdaCLY07Z-uF-NXuKF6-P89nNIjYpqj62iiylRuZWiSyVCkjaygzfswxFYTIsSGlUaSZBi01mc54J4oUhjlzbjeFTBodd47sQPNnyy7tG-12JUO6dlIOTcu-kPDoZkKsD4ojov45QcAmK_wKyB2C1
CODEN IETBAC
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TBC.2025.3583989
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1557-9611
EndPage 12
ExternalDocumentID 10_1109_TBC_2025_3583989
11073809
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan
  grantid: 113-2221-E-007-098
– fundername: National Nature Science Foundation of China
  grantid: NSFC 62101147
– fundername: National Science Foundation, USA
  grantid: 2335150
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
M43
VH1
VJK
ID FETCH-LOGICAL-c219t-f9efe2c86f9542890e8fdc83944157c417e9a192480a5b4f6345e37ce313afbc3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001527374500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9316
IngestDate Sat Nov 29 07:48:55 EST 2025
Wed Aug 27 02:14:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c219t-f9efe2c86f9542890e8fdc83944157c417e9a192480a5b4f6345e37ce313afbc3
ORCID 0000-0002-3576-0021
0000-0002-0178-1246
0000-0001-8890-5389
0000-0001-9896-1325
0000-0002-2811-3758
PageCount 12
ParticipantIDs crossref_primary_10_1109_TBC_2025_3583989
ieee_primary_11073809
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on broadcasting
PublicationTitleAbbrev TBC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003002
Score 2.4014397
Snippet In this paper, we propose a novel distributed multimedia recommendation system (DMRS) to address personalized preference by use of the matrix-sketching...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Collaborative filtering
Digital multimedia broadcasting
Dimensionality reduction
Distributed databases
Distributed multimedia recommendation system (DMRS)
Electronic mail
matrix sketching
Multimedia systems
normalized root-mean-square error (NRMSE)
Privacy
randomized matrix-factorization algorithm
Recommender systems
Robustness
Servers
ϵ-robustness
Title Novel Distributed Multimedia Recommendation Systems Using Personalized Information
URI https://ieeexplore.ieee.org/document/11073809
WOSCitedRecordID wos001527374500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9611
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003002
  issn: 0018-9316
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBRymiFJAHhMSQ1omT2B6hUDFVFSpSt8h2zlIl2qK-Bn49tuOWMjCwRFF0VqK7i33n83cfQnfUepH1gzxiXMso5UpEKhf2QkrKhDa5BOLJJli_z0cjMQhgdY-FAQB_-Aza7tbX8suZXrmtso7LVSh3cL19xvIKrLWddikhVWvw2P7BNN7WJInoDJ-6NhNMsjbNbDzgGN131qAdUhW_pvRO_vk1p-g4BI_4sbL2GdqDaR0d7bQUrKNWEBovJvge_4J_LM7RW3-2hg_87LrlOqIrKLFH4Hr8CHap6MS-tKJZwqGZOfanCvBgE7V_2UEBxOTEGui99zLsvkaBVSHSdnZaRkaAgUTz3IgsdWVG4KbU3AFk44zpNGYgpEvLOJGZSk1O0wwo00BjKo3S9ALVprMpXCIsQbiOd5AaI9OkVFzlsZIJyVUJVDPVRA8bPRefVfOMwicdRBTWJoWzSRFs0kQNp-IfuaDdqz-et9ChG17thlyj2nK-ght0oNfL8WJ-613jG4vNuOk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQQIGHqWIUh4eEBJDWid2EnuEQlVEqSpUpG5R7JylSrRFfQ38emwnLWVgYImi6PLQ3cW-8_n7DqEbarzI-EHkxVylHuNSeDIS5kAyGguloxSIazYRd7t8MBC9AqzusDAA4DafQd2eulp-NlELu1TWsLkK5Rautx0yFpAcrrUeeCkhOTm4b_5h6q-rkkQ0-g9NkwsGYZ2GJiKwPd03ZqGNtipuVmkd_vN7jtBBET7i-9zex2gLxmW0v0EqWEa1Qmg4G-Fb_AsAMjtBb93JEj7wo-XLta2uIMMOg-sQJNgmoyPz0rzREi7ozLHbV4B7q7j9y9xUwJisWAW9t576zbZX9FXwlBmf5p4WoCFQPNIiZLbQCFxniluIrB_GivkxiNQmZpykoWQ6oiwEGiugPk21VPQUlcaTMZwhnIKwnHfAtE5ZkEkuI1-mAYlkBlTFsoruVnpOPnP6jMSlHUQkxiaJtUlS2KSKKlbFP3KFds__uH6Ndtv9107See6-1NCefVS-NnKBSvPpAi7RjlrOh7PplXOTb1VGvDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Distributed+Multimedia+Recommendation+Systems+Using+Personalized+Information&rft.jtitle=IEEE+transactions+on+broadcasting&rft.au=Chang%2C+Shih+Yu&rft.au=Wu%2C+Hsiao-Chun&rft.au=Yan%2C+Kun&rft.au=Huang%2C+Scott+Chih-Hao&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9316&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTBC.2025.3583989&rft.externalDocID=11073809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9316&client=summon