Global and Fast Refinement of Greedy Sensor Selection Algorithms for Linear Models

This letter focuses on greedy approaches to select the most informative <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> sensors from <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE signal processing letters Ročník 32; s. 2574 - 2578
Hlavní autori: Liu, Lingya, Wang, Yiyin, Hua, Cunqing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:1070-9908, 1558-2361
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This letter focuses on greedy approaches to select the most informative <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> sensors from <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> candidates to form a measurement submatrix that minimizes the estimation error. It is a submatrix selection problem. We refine conventional greedy sensor selection algorithms based on the square maximum-volume (SMV) submatrices finding method, particularly at their <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>th step, with <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> being the problem dimension. Our main idea is to increase the volume of the square measurement submatrix associated with the <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> sensors by iteratively swapping the selected and unselected sensors based on the dominant property of the maximum-volume submatrix. This simple refinement method ensures a square measurement matrix with increased volume, facilitating the subsequent greedy steps. It can be easily applied to existing greedy algorithms for performance improvement without increasing their complexity order. Numerical results demonstrate the effectiveness of the proposed refinement method in improving several popular greedy algorithms.
AbstractList This letter focuses on greedy approaches to select the most informative <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> sensors from <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> candidates to form a measurement submatrix that minimizes the estimation error. It is a submatrix selection problem. We refine conventional greedy sensor selection algorithms based on the square maximum-volume (SMV) submatrices finding method, particularly at their <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>th step, with <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> being the problem dimension. Our main idea is to increase the volume of the square measurement submatrix associated with the <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> sensors by iteratively swapping the selected and unselected sensors based on the dominant property of the maximum-volume submatrix. This simple refinement method ensures a square measurement matrix with increased volume, facilitating the subsequent greedy steps. It can be easily applied to existing greedy algorithms for performance improvement without increasing their complexity order. Numerical results demonstrate the effectiveness of the proposed refinement method in improving several popular greedy algorithms.
Author Hua, Cunqing
Wang, Yiyin
Liu, Lingya
Author_xml – sequence: 1
  givenname: Lingya
  orcidid: 0000-0002-4877-5951
  surname: Liu
  fullname: Liu, Lingya
  email: lyliu@shmtu.edu.cn
  organization: College of Information Engineering, Shanghai Maritime University, Shanghai, China
– sequence: 2
  givenname: Yiyin
  orcidid: 0000-0002-4464-6589
  surname: Wang
  fullname: Wang, Yiyin
  email: yiyinwang@sjtu.edu.cn
  organization: State Key Laboratory of Submarine Geoscience, School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Cunqing
  orcidid: 0000-0003-0243-805X
  surname: Hua
  fullname: Hua, Cunqing
  email: cqhua@sjtu.edu.cn
  organization: School of Computer Science, Shanghai Jiao Tong University, Shanghai, China
BookMark eNpFkLFOwzAQhi1UJNrCzsDgF0g5x3YSj1VFC1IQqO0eufYZglIb2Vn69rhqJab_dP99N3wzMvHBIyGPDBaMgXpud5-LEkq54LJhQpU3ZMqkbIqSV2ySZ6ihUAqaOzJL6QcAGtbIKdluhnDQA9Xe0rVOI92i6z0e0Y80OLqJiPZEd-hTiDkGNGMfPF0OXyH24_cxUZeLNiM60vdgcUj35NbpIeHDNedkv37Zr16L9mPztlq2hSmZGgtXWwkV55Zb4LUQByEsK2vMW264ZpUGXeEBnGFS84o7I4VWdaW4NjUgnxO4vDUxpBTRdb-xP-p46hh0ZyVdVtKdlXRXJRl5uiA9Iv6fMxCSiYb_Ad5HXr8
CODEN ISPLEM
Cites_doi 10.1142/9789812836021_0015
10.1109/LSP.2017.2783350
10.1109/RadarConf2043947.2020.9266660
10.1109/TSP.2017.2773429
10.1109/TCOMM.2010.09.0901232
10.1109/TSP.2014.2299518
10.1016/j.applthermaleng.2015.09.078
10.1109/TSP.2008.2007095
10.1109/TSP.2014.2379662
10.1109/TSP.2019.2903017
10.1287/opre.2023.2488
10.1109/TSP.2016.2550005
10.1109/ICASSP49660.2025.10888657
10.1109/TSP.2023.3283047
10.1109/TSP.2013.2289881
10.1109/CDC.2010.5717225
10.1109/LSP.2013.2297419
10.1109/TSP.2016.2573767
10.1109/TSP.2003.821099
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LSP.2025.3581492
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 2578
ExternalDocumentID 10_1109_LSP_2025_3581492
11045148
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62371282
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c219t-f7d50633d3d03744b44d127ed503c3a16a0a6eb0fc15a363fc54a97693ac70e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001525503100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Sat Nov 29 07:44:31 EST 2025
Wed Aug 27 02:00:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c219t-f7d50633d3d03744b44d127ed503c3a16a0a6eb0fc15a363fc54a97693ac70e3
ORCID 0000-0002-4877-5951
0000-0003-0243-805X
0000-0002-4464-6589
PageCount 5
ParticipantIDs crossref_primary_10_1109_LSP_2025_3581492
ieee_primary_11045148
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1142/9789812836021_0015
– ident: ref18
  doi: 10.1109/LSP.2017.2783350
– ident: ref7
  doi: 10.1109/RadarConf2043947.2020.9266660
– ident: ref5
  doi: 10.1109/TSP.2017.2773429
– ident: ref17
  doi: 10.1109/TCOMM.2010.09.0901232
– ident: ref12
  doi: 10.1109/TSP.2014.2299518
– ident: ref10
  doi: 10.1016/j.applthermaleng.2015.09.078
– ident: ref1
  doi: 10.1109/TSP.2008.2007095
– ident: ref3
  doi: 10.1109/TSP.2014.2379662
– ident: ref13
  doi: 10.1109/TSP.2019.2903017
– ident: ref16
  doi: 10.1287/opre.2023.2488
– ident: ref6
  doi: 10.1109/TSP.2016.2550005
– ident: ref8
  doi: 10.1109/ICASSP49660.2025.10888657
– ident: ref14
  doi: 10.1109/TSP.2023.3283047
– ident: ref4
  doi: 10.1109/TSP.2013.2289881
– ident: ref2
  doi: 10.1109/CDC.2010.5717225
– ident: ref11
  doi: 10.1109/LSP.2013.2297419
– ident: ref9
  doi: 10.1109/TSP.2016.2573767
– ident: ref19
  doi: 10.1109/TSP.2003.821099
SSID ssj0008185
Score 2.4389997
Snippet This letter focuses on greedy approaches to select the most informative <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> sensors from...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 2574
SubjectTerms Atmospheric measurements
Complexity theory
Covariance matrices
dominant submatrix
Eigenvalues and eigenfunctions
global search
Greedy algorithms
linear model
maximum-volume submatrix
Pollution measurement
Sensor selection
Signal processing algorithms
Temperature measurement
Training
Volume measurement
Title Global and Fast Refinement of Greedy Sensor Selection Algorithms for Linear Models
URI https://ieeexplore.ieee.org/document/11045148
Volume 32
WOSCitedRecordID wos001525503100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxQADn0WUL3lgYUibNE6cjBWiYqiqqu3QLXLsM1QqCUpSJP49ZyeFMjCwJJGTWNGz4ntn370j5F6xMEKmqx0_1aHDgAeOSMEcUvBEEGutrc7smE8m0XIZT5tkdZsLAwA2-Ax65tLu5atcbsxSWR9NFUMDH7VIi_OwTtb6nnaN5akDDF0Hp9houyfpxv3xfIqe4CDoGbEvFg9-2aCdoirWpoyO__k1J-SoIY90WI_2KdmD7Iwc7kgKnpNZLeJPRaboSJQVnYHGu6YrmmtqwmzUJ52j85oXeFrbSKyMDtcvebGqXt9KiiyWooeKfwA1hdLWZYcsRk-Lx2enqZvgSJx_KkdzFSDz8JWvjLoMSxlT3oADtvrSF14oXBFC6mrpBcIPfS0DJmJTFFFI7oJ_QdpZnsEloSGgewYiUnKgGQCLkb1EXEikAV7kat4lD1sgk_daHSOxXoUbJwh6YkBPGtC7pGMw_Hmuge_qj_ZrcmBer5c7bki7KjZwS_blR7Uqizs79l_uwKyo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAEDzyLK0wMLQ9o8nNdYIaoiSlW1HbpFjn2GSiVBSYrEv-ecpFAGBpYkciLL-pL4vrPvviPkVjIvQKarDCdWnsHAdw0egz7EYHE3VEqVOrMDfzgMZrNwVCerl7kwAFAGn0FbX5Z7-TIVS71U1kFTxdDAB5tky2XMNqt0re-JV9ueKsTQNHCSDVa7kmbYGUxG6AvablvLfbHQ_mWF1sqqlFald_DP8RyS_Zo-0m71vo_IBiTHZG9NVPCEjCsZf8oTSXs8L-gYFN7VXdFUUR1oIz_pBN3XNMPToozFSmh38ZJm8-L1LafIYyn6qPgPUF0qbZE3ybT3ML3vG3XlBEPgDFQYypcucg9HOlLry7CYMWnZPmCrIxxuedzkHsSmEpbLHc9RwmU81GURufBNcE5JI0kTOCPUA3TQgAdS2IoBsBD5S-BzgUTACkzlt8jdCsjovdLHiEq_wgwjBD3SoEc16C3S1Bj-PFfDd_5H-w3Z6U-fB9Hgcfh0QXZ1V9XixyVpFNkSrsi2-CjmeXZdfgdfHAKv7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+and+Fast+Refinement+of+Greedy+Sensor+Selection+Algorithms+for+Linear+Models&rft.jtitle=IEEE+signal+processing+letters&rft.au=Liu%2C+Lingya&rft.au=Wang%2C+Yiyin&rft.au=Hua%2C+Cunqing&rft.date=2025&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=32&rft.spage=2574&rft.epage=2578&rft_id=info:doi/10.1109%2FLSP.2025.3581492&rft.externalDocID=11045148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon