Adaptive Fuzzy Wavelet Neural Network Event-Triggered Consensus Tracking Control for Networked Hyperbolic PDE-ODE Systems
In this article, the event-triggered consensus tracking control problem is explored for a network of hyperbolic partial differential equations (PDEs) with boundary actuator dynamics described by ordinary differential equations. Control input appears in actuator dynamics rather than in the PDE subsys...
Uloženo v:
| Vydáno v: | IEEE transactions on fuzzy systems Ročník 32; číslo 8; s. 4699 - 4708 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2024
|
| Témata: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, the event-triggered consensus tracking control problem is explored for a network of hyperbolic partial differential equations (PDEs) with boundary actuator dynamics described by ordinary differential equations. Control input appears in actuator dynamics rather than in the PDE subsystem, which poses an interesting open problem. Unknown nonlinear actuator dynamics and local interconnection information render existing boundary control algorithms no longer applicable. To handle this, based on the infinite and finite-dimension backstepping techniques, a novel distributed adaptive tracking controller is designed to realize the consensus tracking control, where the unknown nonlinearities are determined by using the fuzzy wavelet neural networks. Moreover, due to the resource constraint of the communication channel and computation burden, this article further develops a new event-triggered mechanism in the sensor-to-controller channel. Based on the proposed event-triggered distributed algorithm, it is amply illustrated that consensus tracking control can be realized. Finally, two examples are provided to demonstrate how effectively the designed tracking algorithm performs. |
|---|---|
| AbstractList | In this article, the event-triggered consensus tracking control problem is explored for a network of hyperbolic partial differential equations (PDEs) with boundary actuator dynamics described by ordinary differential equations. Control input appears in actuator dynamics rather than in the PDE subsystem, which poses an interesting open problem. Unknown nonlinear actuator dynamics and local interconnection information render existing boundary control algorithms no longer applicable. To handle this, based on the infinite and finite-dimension backstepping techniques, a novel distributed adaptive tracking controller is designed to realize the consensus tracking control, where the unknown nonlinearities are determined by using the fuzzy wavelet neural networks. Moreover, due to the resource constraint of the communication channel and computation burden, this article further develops a new event-triggered mechanism in the sensor-to-controller channel. Based on the proposed event-triggered distributed algorithm, it is amply illustrated that consensus tracking control can be realized. Finally, two examples are provided to demonstrate how effectively the designed tracking algorithm performs. |
| Author | Yao, Xiangqian Zheng, Yukan Liu, Yu |
| Author_xml | – sequence: 1 givenname: Yukan surname: Zheng fullname: Zheng, Yukan email: auykzhengxsj@mail.scut.edu.cn organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Xiangqian orcidid: 0000-0001-8513-7839 surname: Yao fullname: Yao, Xiangqian email: auyxqjiayou@mail.scut.edu.cn organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Yu orcidid: 0000-0002-4191-5974 surname: Liu fullname: Liu, Yu email: auylau@scut.edu.cn organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China |
| BookMark | eNpNkM1qwkAUhYdioWr7AqWLeYHY-U-yFI21ILXQSMFNmCR3JDUmMhMt8ekbq4WuzuVwvrv4BqhX1RUg9EjJiFISPsez1Xo9YoSJEReUMBXeoD4NBfUI4aLX3URxT_lE3aGBc1-EUCFp0EftONf7pjgCnh1OpxZ_6iOU0OA3OFhddtF813aLoyNUjRfbYrMBCzme1JWDyh0cjq3OtkW1OVeNrUtsavuHdcN5uweb1mWR4fdp5C2nEf5oXQM7d49ujS4dPFxziFazKJ7MvcXy5XUyXngZo2HjQSiV0QFnmaQyT5UxCliWaSIN1ybIfaVYKiQXuSR-3jUy0L5M_dwIEmhJ-BCxy9_M1s5ZMMneFjtt24SS5Cwv-ZWXnOUlV3kd9HSBCgD4B0hJhRD8B03db8o |
| CODEN | IEFSEV |
| Cites_doi | 10.1109/TMECH.2020.2987963 10.1016/j.automatica.2021.109637 10.1016/j.automatica.2018.06.051 10.1016/j.automatica.2020.109249 10.1016/j.automatica.2021.109640 10.1109/TFUZZ.2011.2116028 10.1109/TSMC.2023.3296484 10.1109/TFUZZ.2017.2735944 10.1007/s11432-020-3194-9 10.1016/j.automatica.2016.02.006 10.1016/S0167-6911(00)00068-2 10.1109/TCYB.2022.3223168 10.1109/TAC.2019.2901704 10.1109/TAC.2022.3197562 10.1016/j.automatica.2022.110787 10.1016/j.automatica.2021.109594 10.1109/TCSI.2023.3244345 10.1109/TAC.2021.3050447 10.1109/LCSYS.2020.3004505 10.1007/s11432-019-2893-y 10.1109/TFUZZ.2022.3199573 10.1016/j.sysconle.2008.02.005 10.1016/j.automatica.2017.12.047 10.1016/j.automatica.2020.108964 10.1109/TCYB.2022.3227899 10.1016/j.automatica.2018.06.021 10.1109/TAC.2021.3094648 10.1016/j.automatica.2023.111202 10.1109/TNNLS.2021.3072907 10.1023/B:JODS.0000024122.71407.83 10.1109/TAC.2021.3059689 10.1016/j.automatica.2021.109562 10.1109/TAC.2015.2506990 10.1109/TFUZZ.2011.2175932 10.1109/TIE.2018.2884172 10.1109/TCYB.2021.3055151 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TFUZZ.2024.3410269 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 4708 |
| ExternalDocumentID | 10_1109_TFUZZ_2024_3410269 10551444 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2021B1515120017 funderid: 10.13039/501100021171 – fundername: National Key R&D Program of China grantid: 2021YFB3202200 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c219t-e956fa832c515db6ff6e2cca05f3af8d7662b4534d507daf858a75b7df408a503 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001291157800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Sat Nov 29 03:12:47 EST 2025 Wed Aug 27 02:35:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c219t-e956fa832c515db6ff6e2cca05f3af8d7662b4534d507daf858a75b7df408a503 |
| ORCID | 0000-0002-4191-5974 0000-0001-8513-7839 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_TFUZZ_2024_3410269 ieee_primary_10551444 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref1 doi: 10.1109/TMECH.2020.2987963 – ident: ref34 doi: 10.1016/j.automatica.2021.109637 – ident: ref4 doi: 10.1016/j.automatica.2018.06.051 – ident: ref20 doi: 10.1016/j.automatica.2020.109249 – ident: ref18 doi: 10.1016/j.automatica.2021.109640 – ident: ref3 doi: 10.1109/TFUZZ.2011.2116028 – ident: ref14 doi: 10.1109/TSMC.2023.3296484 – ident: ref28 doi: 10.1109/TFUZZ.2017.2735944 – ident: ref13 doi: 10.1007/s11432-020-3194-9 – ident: ref31 doi: 10.1016/j.automatica.2016.02.006 – ident: ref22 doi: 10.1016/S0167-6911(00)00068-2 – ident: ref26 doi: 10.1109/TCYB.2022.3223168 – ident: ref23 doi: 10.1109/TAC.2019.2901704 – ident: ref29 doi: 10.1109/TAC.2022.3197562 – ident: ref30 doi: 10.1016/j.automatica.2022.110787 – ident: ref24 doi: 10.1016/j.automatica.2021.109594 – ident: ref27 doi: 10.1109/TCSI.2023.3244345 – ident: ref35 doi: 10.1109/TAC.2021.3050447 – ident: ref19 doi: 10.1109/LCSYS.2020.3004505 – ident: ref5 doi: 10.1007/s11432-019-2893-y – ident: ref15 doi: 10.1109/TFUZZ.2022.3199573 – ident: ref6 doi: 10.1016/j.sysconle.2008.02.005 – ident: ref16 doi: 10.1016/j.automatica.2017.12.047 – ident: ref9 doi: 10.1016/j.automatica.2020.108964 – ident: ref25 doi: 10.1109/TCYB.2022.3227899 – ident: ref7 doi: 10.1016/j.automatica.2018.06.021 – ident: ref33 doi: 10.1109/TAC.2021.3094648 – ident: ref2 doi: 10.1016/j.automatica.2023.111202 – ident: ref10 doi: 10.1109/TNNLS.2021.3072907 – ident: ref21 doi: 10.1023/B:JODS.0000024122.71407.83 – ident: ref8 doi: 10.1109/TAC.2021.3059689 – ident: ref32 doi: 10.1016/j.automatica.2021.109562 – ident: ref17 doi: 10.1109/TAC.2015.2506990 – ident: ref36 doi: 10.1109/TFUZZ.2011.2175932 – ident: ref11 doi: 10.1109/TIE.2018.2884172 – ident: ref12 doi: 10.1109/TCYB.2021.3055151 |
| SSID | ssj0014518 |
| Score | 2.447763 |
| Snippet | In this article, the event-triggered consensus tracking control problem is explored for a network of hyperbolic partial differential equations (PDEs) with... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 4699 |
| SubjectTerms | Actuators Adaptive systems Backstepping Consensus control Consensus tracking event-triggered control Fuzzy systems fuzzy/neural approximators Heuristic algorithms hyperbolic partial differential equations (PDEs) nonlinear actuator dynamics Vehicle dynamics |
| Title | Adaptive Fuzzy Wavelet Neural Network Event-Triggered Consensus Tracking Control for Networked Hyperbolic PDE-ODE Systems |
| URI | https://ieeexplore.ieee.org/document/10551444 |
| Volume | 32 |
| WOSCitedRecordID | wos001291157800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBQimivOSBDbl1EjtOxoom6oBKh1ZUXSIndhBLW_WB1P567pIUlYGBLTrZUZSz72Hfdx8hT-DyAimMwyyXAROwJlhofcFckYOhtL5jSqDwqxoMgskkHFZg9QILY60tis9sGx-Lu3wzzzZ4VNZBMkdIAMQxOVZKlWCtnysDIZ0S9-Z7zFfc3yNkeNgZxePpFHJBV7TBaEPWEf7yQge0KoVXiev__J4Lcl6Fj7Rb6vuSHNlZg9T31Ay02qkNcnbQZ_CKbLtGL9Cu0Xiz223pu0a6iTXFzhzwtkFZCk4jrH1kI8jXP5DBkyKZJzJhrCh4tAzP1FGEle0UQt39NBjYh2R2mWKHYTrsReytF9GqE3qTjONo9NJnFecCy8B2rZmFfCnXsM0zCHQQopf71gUtc5l7Og-M8n03FdITBgJJAxIZaCVTZXLBAy25d01qs_nM3hDq6QCiqzRzuGeElUYrblylPexZxUOtW-R5r4NkUbbWSIqUhIdJobEENZZUGmuRJirgYGT572__kN-RU5xe1urdk9p6ubEP5CT7Wn-ulo_F0vkGSwrCPg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ74StSDKGJ824M3U-jutvs4EoVgROQAkXDZlG3XeAGCYCK_3pndxeDBg7fNpNts9mvn0c7MB3CLJi9U0jjcChVyiWuCR9aX3JUpKkrrOyYvFG4HnU44GETdolg9q4Wx1mbJZ7ZKj9ldvpkkCzoqqxGZIwYAchO2lZSuk5dr_VwaSOXklW--x_1A-KsaGRHVes3-cIjRoCurqLYx7oh-2aE1YpXMrjRL__yiQzgoHEhWzxE_gg07LkNpRc7Air1ahv21ToPH8FU3ekqajTUXy-UXe9VEODFn1JsDZ-vkyeCsQdmPvIcR-xtxeDKi8yQujA-GNi2hU3USUW47Q2d39RoObGE4OxtRj2HWfWjwl4cGK3qhV6DfbPTuW7xgXeAJaq85txgxpRo3eoKuDhXppb51EWehUk-noQl83x1J5UmDrqRBiQp1oEaBSaUItRLeCWyNJ2N7CszTIfpXo8QRnpFWGR0I4wbao65VItL6DO5WGMTTvLlGnAUlIoozxGJCLC4QO4MKAbA2Mv_353_Ib2C31Xtux-3HztMF7NFUeebeJWzNZwt7BTvJ5_z9Y3adLaNvjqHFhQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Fuzzy+Wavelet+Neural+Network+Event-Triggered+Consensus+Tracking+Control+for+Networked+Hyperbolic+PDE-ODE+Systems&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zheng%2C+Yukan&rft.au=Yao%2C+Xiangqian&rft.au=Liu%2C+Yu&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=32&rft.issue=8&rft.spage=4699&rft.epage=4708&rft_id=info:doi/10.1109%2FTFUZZ.2024.3410269&rft.externalDocID=10551444 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |