Robust Score-Based Quickest Change Detection

Methods in the field of quickest change detection rapidly detect in real-time a change in the data-generating distribution of an online data stream. Existing methods have been able to detect this change point when the densities of the pre- and post-change distributions are known. Recent work has ext...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on information theory Ročník 71; číslo 7; s. 5539 - 5555
Hlavní autori: Moushegian, Sean, Wu, Suya, Diao, Enmao, Ding, Jie, Banerjee, Taposh, Tarokh, Vahid
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.07.2025
Predmet:
ISSN:0018-9448, 1557-9654
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Methods in the field of quickest change detection rapidly detect in real-time a change in the data-generating distribution of an online data stream. Existing methods have been able to detect this change point when the densities of the pre- and post-change distributions are known. Recent work has extended these results to the case where the pre- and post-change distributions are known only by their score functions. This work considers the case where the pre- and post-change score functions are known only to correspond to distributions in two disjoint sets. This work selects a pair of least-favorable distributions from these sets to robustify the existing score-based quickest change detection algorithm, the properties of which are studied. This paper calculates the least-favorable distributions for specific model classes and provides methods of estimating the least-favorable distributions for common constructions. Simulation results are provided demonstrating the performance of our robust change detection algorithm.
AbstractList Methods in the field of quickest change detection rapidly detect in real-time a change in the data-generating distribution of an online data stream. Existing methods have been able to detect this change point when the densities of the pre- and post-change distributions are known. Recent work has extended these results to the case where the pre- and post-change distributions are known only by their score functions. This work considers the case where the pre- and post-change score functions are known only to correspond to distributions in two disjoint sets. This work selects a pair of least-favorable distributions from these sets to robustify the existing score-based quickest change detection algorithm, the properties of which are studied. This paper calculates the least-favorable distributions for specific model classes and provides methods of estimating the least-favorable distributions for common constructions. Simulation results are provided demonstrating the performance of our robust change detection algorithm.
Author Moushegian, Sean
Ding, Jie
Banerjee, Taposh
Wu, Suya
Tarokh, Vahid
Diao, Enmao
Author_xml – sequence: 1
  givenname: Sean
  orcidid: 0009-0001-6416-2303
  surname: Moushegian
  fullname: Moushegian, Sean
  organization: Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
– sequence: 2
  givenname: Suya
  orcidid: 0000-0002-5383-0900
  surname: Wu
  fullname: Wu, Suya
  organization: Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
– sequence: 3
  givenname: Enmao
  orcidid: 0000-0002-9151-7990
  surname: Diao
  fullname: Diao, Enmao
  organization: Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
– sequence: 4
  givenname: Jie
  orcidid: 0000-0002-3584-6140
  surname: Ding
  fullname: Ding, Jie
  organization: School of Statistics, University of Minnesota Twin Cities, Minneapolis, MN, USA
– sequence: 5
  givenname: Taposh
  orcidid: 0000-0003-4163-6913
  surname: Banerjee
  fullname: Banerjee, Taposh
  email: taposh.banerjee@pitt.edu
  organization: Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 6
  givenname: Vahid
  orcidid: 0000-0003-2994-6302
  surname: Tarokh
  fullname: Tarokh, Vahid
  organization: Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
BookMark eNpNj8tOwzAQRS1UJNLCngWLfAAOfideQihQqRICwtqynQmER4zidMHf46hdsLozo7lz5yzRYggDIHROSUEp0VfNpikYYbLgUilVlkcoo1KWWCspFigjhFZYC1GdoGWMH6kVkrIMXT4Ht4tT_uLDCPjGRmjzp13vPyEN63c7vEF-CxP4qQ_DKTru7FeEs4Ou0Ovduqkf8PbxflNfb7FnVE_YC-uYbyvrWlc54K2igpdzbTttSccoA5JUOZaek05oohUrPZHKUss1XyGyv-vHEOMInfkZ-287_hpKzExrEq2Zac2BNlku9pYeAP6t64qlcP4HOutR6A
CODEN IETTAW
Cites_doi 10.1109/18.737522
10.2307/2333401
10.1137/1108002
10.1201/b17279
10.1137/S0040585X97981202
10.1017/CBO9780511754678
10.1214/aos/1176346587
10.1109/TIT.2011.2104993
10.1080/01621459.2018.1518237
10.1109/ACCESS.2022.3187991
10.1137/1.9781611970302
10.1214/aoms/1177697092
10.1214/aos/1176350164
10.1214/aoms/1177693055
10.1109/TIT.2023.3328274
10.1080/00401706.1966.10490374
10.1016/B978-0-12-411597-2.00006-0
10.1080/03610919008812866
10.1162/NECO_a_00142
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIT.2025.3566677
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 5555
ExternalDocumentID 10_1109_TIT_2025_3566677
10982143
Genre orig-research
GrantInformation_xml – fundername: Air Force Research Laboratory
  grantid: FA-8750-20-2-0504
  funderid: 10.13039/100006602
– fundername: Army Research Laboratory; U.S. Army Research Laboratory
  grantid: W911NF2120295
  funderid: 10.13039/100006754
– fundername: Office of Naval Research
  grantid: N00014-21-1-2590
  funderid: 10.13039/100000006
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
ID FETCH-LOGICAL-c219t-c4ab2cd8abdb8be3d61437db8baf9a0f212e0a0f6b26545b4909627c056a1a393
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001513211100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sat Nov 29 07:49:54 EST 2025
Wed Aug 27 01:46:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c219t-c4ab2cd8abdb8be3d61437db8baf9a0f212e0a0f6b26545b4909627c056a1a393
ORCID 0000-0003-4163-6913
0000-0002-3584-6140
0000-0003-2994-6302
0000-0002-5383-0900
0000-0002-9151-7990
0009-0001-6416-2303
PageCount 17
ParticipantIDs crossref_primary_10_1109_TIT_2025_3566677
ieee_primary_10982143
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
LeCun (ref13) 2006; 1
ref15
ref11
ref10
Song (ref20)
ref1
ref17
Song (ref14)
Hyvärinen (ref16) 2005; 6
ref18
Ding (ref24); 32
Csiszár (ref28) 1984; 1
ref23
ref25
ref22
ref21
Doob (ref26) 1953; 7
Liao (ref19) 2022
ref27
ref8
ref7
ref9
ref4
ref3
ref6
Basseville (ref2) 1993; 104
ref5
References_xml – ident: ref9
  doi: 10.1109/18.737522
– ident: ref10
  doi: 10.2307/2333401
– volume: 1
  start-page: 205
  year: 1984
  ident: ref28
  article-title: Information geometry and alternating minimization procedures
  publication-title: Statist. Decisions
– ident: ref5
  doi: 10.1137/1108002
– volume: 1
  volume-title: Predicting Structured Data
  year: 2006
  ident: ref13
  article-title: A tutorial on energy-based learning
– volume: 6
  start-page: 695
  issue: 24
  year: 2005
  ident: ref16
  article-title: Estimation of non-normalized statistical models by score matching
  publication-title: J. Mach. Learn. Res.
– ident: ref4
  doi: 10.1201/b17279
– ident: ref6
  doi: 10.1137/S0040585X97981202
– volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref20
  article-title: Generative modeling by estimating gradients of the data distribution
– year: 2022
  ident: ref19
  article-title: Gaussian–Bernoulli RBMs without tears
  publication-title: arXiv:2210.10318
– volume: 32
  start-page: 2393
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: Gradient information for representation and modeling
– ident: ref3
  doi: 10.1017/CBO9780511754678
– ident: ref11
  doi: 10.1214/aos/1176346587
– ident: ref17
  doi: 10.1109/TIT.2011.2104993
– ident: ref23
  doi: 10.1080/01621459.2018.1518237
– ident: ref22
  doi: 10.1109/ACCESS.2022.3187991
– ident: ref18
  doi: 10.1137/1.9781611970302
– ident: ref27
  doi: 10.1214/aoms/1177697092
– ident: ref8
  doi: 10.1214/aos/1176350164
– ident: ref7
  doi: 10.1214/aoms/1177693055
– ident: ref15
  doi: 10.1109/TIT.2023.3328274
– volume: 7
  year: 1953
  ident: ref26
  publication-title: Stochastic Processes
– volume: 104
  year: 1993
  ident: ref2
  publication-title: Detection of Abrupt Changes: Theory and Application
– ident: ref12
  doi: 10.1080/00401706.1966.10490374
– ident: ref1
  doi: 10.1016/B978-0-12-411597-2.00006-0
– ident: ref25
  doi: 10.1080/03610919008812866
– volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref14
  article-title: Score-based generative modeling through stochastic differential equations
– ident: ref21
  doi: 10.1162/NECO_a_00142
SSID ssj0014512
Score 2.4878278
Snippet Methods in the field of quickest change detection rapidly detect in real-time a change in the data-generating distribution of an online data stream. Existing...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 5539
SubjectTerms Change detection algorithms
change-point detection
Computational modeling
Delays
Detection algorithms
Heart rate
Quickest change detection
Reviews
robust detection
score-based methods
Simulation
Stochastic processes
Training
Uncertainty
Title Robust Score-Based Quickest Change Detection
URI https://ieeexplore.ieee.org/document/10982143
Volume 71
WOSCitedRecordID wos001513211100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BxQADhVJEeSkDCxIueTW2R14VLBWgInWLbOcsdUlRm_D7OTspKgMDUywnUaKzLt_35e58AFeW1JoIhWWy0CRQItRMCBMzOXIEVmsMrfXNJvhkImYz-doWq_taGET0yWc4dEMfyy8Wpna_ysjDpYgJ4Ldhm3PeFGv9hAzSUdRsDR6RB5PoWMckQ3k7fZmSEoxHw4TIS8b5LwzaaKriMWXc_efbHMB-Sx6Du2a1D2ELyx50140ZgtZPe7C3scvgEdy8L3S9qug0PYHdE2wVwVs9J_elyaa6IHjEyudklX34GD9NH55Z2ySBGfrYVMykSsemEEoXWmhMCsLbhLuxslKFlqAJQzpmOs6ILelUhq7fjiHioyKVyOQYOuWixBMIYplajbFBjpZ4ihKOPvHEcJEhkqwYwPXabPlnsxdG7jVEKHMyce5MnLcmHkDfWWzjusZYp3_Mn8Guu71JhD2HTrWs8QJ2zFc1Xy0v_Up_A2AGpcc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5oNVEPVmuN9cnBi4koLK_do6-mjbVRg0lvhF1mk16oacHf7yxQUw8ePLFZCJDZDN_3MTM7AJea1Bp3uLZFJkmguChtzhWzRWAIrJToaF01m4jGYz6ZiNemWL2qhUHEKvkMb8ywiuVnM1WaX2Xk4YIzAvh12Ah8n7l1udZP0MAP3HpzcJd8mGTHMirpiNt4GJMWZMGNR_QljKJfKLTSVqVClX77n--zB7sNfbTu6vXehzXMO9BetmawGk_twM7KPoMHcP0-k-WioNP0BPuegCuz3sopOTBN1vUF1iMWVVZW3oWP_lP8MLCbNgm2os9NYSs_lUxlPJWZ5BK9jBDXi8w41SJ1NIETOnQMJQuJL0lfOKbjjiLqk7qpJ7xDaOWzHI_AYsLXEpnCCDUxlZQbAhV5KuIhIgmLHlwtzZZ81rthJJWKcERCJk6MiZPGxD3oGoutXFcb6_iP-QvYGsQvo2Q0HD-fwLa5VZ0WewqtYl7iGWyqr2K6mJ9Xq_4NMxWpDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Score-Based+Quickest+Change+Detection&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Moushegian%2C+Sean&rft.au=Wu%2C+Suya&rft.au=Diao%2C+Enmao&rft.au=Ding%2C+Jie&rft.date=2025-07-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=71&rft.issue=7&rft.spage=5539&rft.epage=5555&rft_id=info:doi/10.1109%2FTIT.2025.3566677&rft.externalDocID=10982143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon