Robust Score-Based Quickest Change Detection
Methods in the field of quickest change detection rapidly detect in real-time a change in the data-generating distribution of an online data stream. Existing methods have been able to detect this change point when the densities of the pre- and post-change distributions are known. Recent work has ext...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 71; no. 7; pp. 5539 - 5555 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.07.2025
|
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Methods in the field of quickest change detection rapidly detect in real-time a change in the data-generating distribution of an online data stream. Existing methods have been able to detect this change point when the densities of the pre- and post-change distributions are known. Recent work has extended these results to the case where the pre- and post-change distributions are known only by their score functions. This work considers the case where the pre- and post-change score functions are known only to correspond to distributions in two disjoint sets. This work selects a pair of least-favorable distributions from these sets to robustify the existing score-based quickest change detection algorithm, the properties of which are studied. This paper calculates the least-favorable distributions for specific model classes and provides methods of estimating the least-favorable distributions for common constructions. Simulation results are provided demonstrating the performance of our robust change detection algorithm. |
|---|---|
| AbstractList | Methods in the field of quickest change detection rapidly detect in real-time a change in the data-generating distribution of an online data stream. Existing methods have been able to detect this change point when the densities of the pre- and post-change distributions are known. Recent work has extended these results to the case where the pre- and post-change distributions are known only by their score functions. This work considers the case where the pre- and post-change score functions are known only to correspond to distributions in two disjoint sets. This work selects a pair of least-favorable distributions from these sets to robustify the existing score-based quickest change detection algorithm, the properties of which are studied. This paper calculates the least-favorable distributions for specific model classes and provides methods of estimating the least-favorable distributions for common constructions. Simulation results are provided demonstrating the performance of our robust change detection algorithm. |
| Author | Moushegian, Sean Ding, Jie Banerjee, Taposh Wu, Suya Tarokh, Vahid Diao, Enmao |
| Author_xml | – sequence: 1 givenname: Sean orcidid: 0009-0001-6416-2303 surname: Moushegian fullname: Moushegian, Sean organization: Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA – sequence: 2 givenname: Suya orcidid: 0000-0002-5383-0900 surname: Wu fullname: Wu, Suya organization: Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA – sequence: 3 givenname: Enmao orcidid: 0000-0002-9151-7990 surname: Diao fullname: Diao, Enmao organization: Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA – sequence: 4 givenname: Jie orcidid: 0000-0002-3584-6140 surname: Ding fullname: Ding, Jie organization: School of Statistics, University of Minnesota Twin Cities, Minneapolis, MN, USA – sequence: 5 givenname: Taposh orcidid: 0000-0003-4163-6913 surname: Banerjee fullname: Banerjee, Taposh email: taposh.banerjee@pitt.edu organization: Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA, USA – sequence: 6 givenname: Vahid orcidid: 0000-0003-2994-6302 surname: Tarokh fullname: Tarokh, Vahid organization: Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA |
| BookMark | eNpNj8tOwzAQRS1UJNLCngWLfAAOfideQihQqRICwtqynQmER4zidMHf46hdsLozo7lz5yzRYggDIHROSUEp0VfNpikYYbLgUilVlkcoo1KWWCspFigjhFZYC1GdoGWMH6kVkrIMXT4Ht4tT_uLDCPjGRmjzp13vPyEN63c7vEF-CxP4qQ_DKTru7FeEs4Ou0Ovduqkf8PbxflNfb7FnVE_YC-uYbyvrWlc54K2igpdzbTttSccoA5JUOZaek05oohUrPZHKUss1XyGyv-vHEOMInfkZ-287_hpKzExrEq2Zac2BNlku9pYeAP6t64qlcP4HOutR6A |
| CODEN | IETTAW |
| Cites_doi | 10.1109/18.737522 10.2307/2333401 10.1137/1108002 10.1201/b17279 10.1137/S0040585X97981202 10.1017/CBO9780511754678 10.1214/aos/1176346587 10.1109/TIT.2011.2104993 10.1080/01621459.2018.1518237 10.1109/ACCESS.2022.3187991 10.1137/1.9781611970302 10.1214/aoms/1177697092 10.1214/aos/1176350164 10.1214/aoms/1177693055 10.1109/TIT.2023.3328274 10.1080/00401706.1966.10490374 10.1016/B978-0-12-411597-2.00006-0 10.1080/03610919008812866 10.1162/NECO_a_00142 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TIT.2025.3566677 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 5555 |
| ExternalDocumentID | 10_1109_TIT_2025_3566677 10982143 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Air Force Research Laboratory grantid: FA-8750-20-2-0504 funderid: 10.13039/100006602 – fundername: Army Research Laboratory; U.S. Army Research Laboratory grantid: W911NF2120295 funderid: 10.13039/100006754 – fundername: Office of Naval Research grantid: N00014-21-1-2590 funderid: 10.13039/100000006 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION |
| ID | FETCH-LOGICAL-c219t-c4ab2cd8abdb8be3d61437db8baf9a0f212e0a0f6b26545b4909627c056a1a393 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001513211100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 |
| IngestDate | Sat Nov 29 07:49:54 EST 2025 Wed Aug 27 01:46:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c219t-c4ab2cd8abdb8be3d61437db8baf9a0f212e0a0f6b26545b4909627c056a1a393 |
| ORCID | 0000-0003-4163-6913 0000-0002-3584-6140 0000-0003-2994-6302 0000-0002-5383-0900 0000-0002-9151-7990 0009-0001-6416-2303 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_TIT_2025_3566677 ieee_primary_10982143 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref12 LeCun (ref13) 2006; 1 ref15 ref11 ref10 Song (ref20) ref1 ref17 Song (ref14) Hyvärinen (ref16) 2005; 6 ref18 Ding (ref24); 32 Csiszár (ref28) 1984; 1 ref23 ref25 ref22 ref21 Doob (ref26) 1953; 7 Liao (ref19) 2022 ref27 ref8 ref7 ref9 ref4 ref3 ref6 Basseville (ref2) 1993; 104 ref5 |
| References_xml | – ident: ref9 doi: 10.1109/18.737522 – ident: ref10 doi: 10.2307/2333401 – volume: 1 start-page: 205 year: 1984 ident: ref28 article-title: Information geometry and alternating minimization procedures publication-title: Statist. Decisions – ident: ref5 doi: 10.1137/1108002 – volume: 1 volume-title: Predicting Structured Data year: 2006 ident: ref13 article-title: A tutorial on energy-based learning – volume: 6 start-page: 695 issue: 24 year: 2005 ident: ref16 article-title: Estimation of non-normalized statistical models by score matching publication-title: J. Mach. Learn. Res. – ident: ref4 doi: 10.1201/b17279 – ident: ref6 doi: 10.1137/S0040585X97981202 – volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS) ident: ref20 article-title: Generative modeling by estimating gradients of the data distribution – year: 2022 ident: ref19 article-title: Gaussian–Bernoulli RBMs without tears publication-title: arXiv:2210.10318 – volume: 32 start-page: 2393 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref24 article-title: Gradient information for representation and modeling – ident: ref3 doi: 10.1017/CBO9780511754678 – ident: ref11 doi: 10.1214/aos/1176346587 – ident: ref17 doi: 10.1109/TIT.2011.2104993 – ident: ref23 doi: 10.1080/01621459.2018.1518237 – ident: ref22 doi: 10.1109/ACCESS.2022.3187991 – ident: ref18 doi: 10.1137/1.9781611970302 – ident: ref27 doi: 10.1214/aoms/1177697092 – ident: ref8 doi: 10.1214/aos/1176350164 – ident: ref7 doi: 10.1214/aoms/1177693055 – ident: ref15 doi: 10.1109/TIT.2023.3328274 – volume: 7 year: 1953 ident: ref26 publication-title: Stochastic Processes – volume: 104 year: 1993 ident: ref2 publication-title: Detection of Abrupt Changes: Theory and Application – ident: ref12 doi: 10.1080/00401706.1966.10490374 – ident: ref1 doi: 10.1016/B978-0-12-411597-2.00006-0 – ident: ref25 doi: 10.1080/03610919008812866 – volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref14 article-title: Score-based generative modeling through stochastic differential equations – ident: ref21 doi: 10.1162/NECO_a_00142 |
| SSID | ssj0014512 |
| Score | 2.4878278 |
| Snippet | Methods in the field of quickest change detection rapidly detect in real-time a change in the data-generating distribution of an online data stream. Existing... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 5539 |
| SubjectTerms | Change detection algorithms change-point detection Computational modeling Delays Detection algorithms Heart rate Quickest change detection Reviews robust detection score-based methods Simulation Stochastic processes Training Uncertainty |
| Title | Robust Score-Based Quickest Change Detection |
| URI | https://ieeexplore.ieee.org/document/10982143 |
| Volume | 71 |
| WOSCitedRecordID | wos001513211100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BxQADhVJEeSkDCxIuaZzE9sirgqUCVKRukV-RuqSoTfj9nO0UlYGBKZaTKNZnnb-73Avgisosd-4WEquEkZSlKZG55oSLEtfNtKHC-GYTbDLhs5l4bZPVfS6MtdYHn9mhG3pfvlnoxv0qQwkXPEGC34ZtxlhI1vpxGaTZKJQGH6EEo9Gx9knG4nb6MkVLMMmGFJWXnLFfHLTRVMVzyrj7z9UcwH6rPEZ3YbcPYctWPeiuGzNErZz2YG-jyuAR3LwvVLOq8TZ-gdwjbZnorZmj-OJkyC6IHm3tY7KqPnyMn6YPz6RtkkA0HjY10alUiTZcKqO4stQg31LmxrIUMi6RmmyM11wlOWpLKhWx67ejUfGRI0kFPYZOtajsCURaonGmJZ4B1KSilJwxnpXKVXinic3zAVyvYSs-Qy2MwtsQsSgQ4sJBXLQQD6DvENt4LoB1-sf8Gey610Mg7Dl06mVjL2BHf9Xz1fLS7_Q3-tek9Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT4MwFH_RaaIenM4Z5ycHLyaiQAttj34tW5yLGkx2I20pyS7MbODf7yswMw8ePNEUAs2vef29x_sCuCQyjKy7xfVUwFzKKHVlpLnLRYbrZjolIq2aTbDxmE8m4rVJVq9yYYwxVfCZubHDypefznRpf5WhhAseIMGvw0ZIaeDX6Vo_TgMa-nVxcB9lGM2OpVfSE7fxMEZbMAhvCKovEWO_WGilrUrFKv32P9ezB7uN-ujc1fu9D2sm70B72ZrBaSS1AzsrdQYP4Pp9pspFgbfxC-49ElfqvJVTFGCcrPMLnEdTVFFZeRc--k_xw8Bt2iS4Go-bwtVUqkCnXKpUcWVIioxLmB3LTEgvQ3IyHl4jFUSoLykqPNtxR6PqI31JBDmEVj7LzRE4WqJ5piWeAiSlIpOcMR5mytZ4J4GJoh5cLWFLPutqGEllRXgiQYgTC3HSQNyDrkVs5bkarOM_5i9gaxC_jJLRcPx8Atv2VXVY7Cm0inlpzmBTfxXTxfy82vVvwwaoPA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Score-Based+Quickest+Change+Detection&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Moushegian%2C+Sean&rft.au=Wu%2C+Suya&rft.au=Diao%2C+Enmao&rft.au=Ding%2C+Jie&rft.date=2025-07-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=71&rft.issue=7&rft.spage=5539&rft.epage=5555&rft_id=info:doi/10.1109%2FTIT.2025.3566677&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2025_3566677 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |