Fast Robust Sparse Bayesian Learning Image Reconstruction Model Based on Generalized Approximate Message Passing

Sparse Bayesian learning (SBL) is an algorithm for high-dimensional data processing based on Bayesian statistical theory. Its goal is to improve the generalization ability and efficiency of the model by introducing sparsity, that is, retaining only some important features of the image. However, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 73; S. 1839 - 1850
Hauptverfasser: Jin, Wenzhe, Lyu, Wentao, Guo, Qing, Deng, Zhijiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 2025
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Sparse Bayesian learning (SBL) is an algorithm for high-dimensional data processing based on Bayesian statistical theory. Its goal is to improve the generalization ability and efficiency of the model by introducing sparsity, that is, retaining only some important features of the image. However, the traditional Sparse Bayesian Learning algorithm involves the operation of n<inline-formula><tex-math notation="LaTeX">\boldsymbol{\times}</tex-math></inline-formula>n dimensional matrix inversion during iterative update, which seriously affects the efficiency and speed of image reconstruction. In order to overcome the above defects, in this paper, we propose a fast robust Sparse Bayesian Learning image reconstruction model based on generalized approximate message passing (GAMP-FRSBL). The damped Gaussian generalized approximate message passing algorithm (Damped GGAMP) is introduced on the basis of SBL to avoid the matrix inversion problem. Combined with the convex optimization strategy, the block coordinate descent (BCD) method is used to iteratively update the parameters to improve the reconstruction efficiency of the model. Finally, experiments are conducted on Indor and Mondrian images, DOTA, COCO and UCM datasets to verify the effectiveness of the GAMP-FRSBL in image reconstruction.
AbstractList Sparse Bayesian learning (SBL) is an algorithm for high-dimensional data processing based on Bayesian statistical theory. Its goal is to improve the generalization ability and efficiency of the model by introducing sparsity, that is, retaining only some important features of the image. However, the traditional Sparse Bayesian Learning algorithm involves the operation of n<inline-formula><tex-math notation="LaTeX">\boldsymbol{\times}</tex-math></inline-formula>n dimensional matrix inversion during iterative update, which seriously affects the efficiency and speed of image reconstruction. In order to overcome the above defects, in this paper, we propose a fast robust Sparse Bayesian Learning image reconstruction model based on generalized approximate message passing (GAMP-FRSBL). The damped Gaussian generalized approximate message passing algorithm (Damped GGAMP) is introduced on the basis of SBL to avoid the matrix inversion problem. Combined with the convex optimization strategy, the block coordinate descent (BCD) method is used to iteratively update the parameters to improve the reconstruction efficiency of the model. Finally, experiments are conducted on Indor and Mondrian images, DOTA, COCO and UCM datasets to verify the effectiveness of the GAMP-FRSBL in image reconstruction.
Author Guo, Qing
Lyu, Wentao
Deng, Zhijiang
Jin, Wenzhe
Author_xml – sequence: 1
  givenname: Wenzhe
  orcidid: 0009-0003-4320-2606
  surname: Jin
  fullname: Jin, Wenzhe
  organization: School of Information Science and Technology, Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
– sequence: 2
  givenname: Wentao
  orcidid: 0000-0002-1164-7534
  surname: Lyu
  fullname: Lyu, Wentao
  email: alvinlwt@zstu.edu.cn
  organization: School of Information Science and Technology, Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
– sequence: 3
  givenname: Qing
  orcidid: 0000-0002-1220-3804
  surname: Guo
  fullname: Guo, Qing
  email: louiseu2013@163.com
  organization: Zhejiang Technical Innovation Service Center, Hangzhou, China
– sequence: 4
  givenname: Zhijiang
  orcidid: 0000-0001-6221-7051
  surname: Deng
  fullname: Deng, Zhijiang
  email: dengzhijiang@fox-ess.com
  organization: Foxess Company Ltd., Wenzhou, China
BookMark eNpNUE1rAjEUDKWFqu29hx7yB9Ymu9l8HK1UKygVtdDb8ja-lS2aXZIVan99I3ro5c0b3szwmD65dY1DQp44G3LOzMtmvRymLM2HWS6lYOKG9LgRPGFCydu4szxLcq2-7kk_hG_GuBBG9kg7gdDRVVMeI6xb8AHpK5ww1ODoHMG72u3o7AA7pCu0jQudP9qubhxdNFvcR3HALY10ig497OvfSEdt65uf-gAd0gWGcHYvIYSY9UDuKtgHfLzigHxO3jbj92T-MZ2NR_PEptx0SSkzxSHbKmBKaGVBo6jSClIjBGpVprlNtZU2iyOey4rJiishNK-0kYDZgLBLrvVNCB6rovXxIX8qOCvOjRWxseLcWHFtLFqeL5YaEf_Jjc61zLM_73lrCw
CODEN ITPRED
Cites_doi 10.1109/34.598228
10.1109/ICSP.2016.7877926
10.1109/34.908974
10.1109/TIP.2017.2681436
10.1109/TSP.2017.2764855
10.1109/78.258082
10.1109/TNNLS.2019.2904701
10.1109/TIT.2005.862083
10.1109/TCI.2025.3540706
10.1109/TSMC.2018.2871267
10.1109/TNNLS.2020.3049056
10.1109/TIP.2009.2032894
10.1007/978-3-319-10602-1_48
10.1109/TSP.2012.2226449
10.1109/TSP.2018.2883021
10.1109/CVPR.2018.00418
10.1038/s41467-019-12490-1
10.1109/TNNLS.2015.2476656
10.1109/TBME.2019.2953732
10.1109/TCYB.2021.3090204
10.1109/TSP.2004.831016
10.1109/ICIP.2010.5650957
10.1016/0169-7439(87)80084-9
10.1109/LGRS.2023.3266008
10.1109/SAM.2014.6882422
10.1126/science.290.5500.2323
10.1109/LGRS.2020.2982706
10.1109/LSP.2022.3221344
10.1109/GlobalSIP.2014.7032140
10.1109/TSG.2019.2938733
10.1109/TIT.2006.871582
10.1007/s12532-011-0029-5
10.1109/TIT.2019.2913109
10.1016/j.ins.2021.06.096
10.1109/ACSSC.2014.7094812
10.1109/ICUWB.2016.7790383
10.1007/s13042-020-01067-w
10.1007/s11760-023-02496-0
10.1109/LSP.2017.2692217
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSP.2025.3566404
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 1850
ExternalDocumentID 10_1109_TSP_2025_3566404
10985865
Genre orig-research
GrantInformation_xml – fundername: Shaoxing Science and Technology Plan Project
  grantid: 2022B41011
– fundername: Key Research and Development Program Foundation of Zhejiang
  grantid: 2022C01079; 2024C01060
– fundername: National Natural Science Foundation of China
  grantid: U1709219; 61601410
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c219t-b6371a3d7a07487ca8e4f2fa2944e87b25c28c6c38c687cbf06f174481f896ae3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001504043000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sat Nov 29 07:50:50 EST 2025
Wed Aug 27 01:38:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c219t-b6371a3d7a07487ca8e4f2fa2944e87b25c28c6c38c687cbf06f174481f896ae3
ORCID 0000-0002-1220-3804
0009-0003-4320-2606
0000-0002-1164-7534
0000-0001-6221-7051
PageCount 12
ParticipantIDs ieee_primary_10985865
crossref_primary_10_1109_TSP_2025_3566404
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Ulyanov (ref23) 2018
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Tipping (ref20) 2001; 1
ref24
ref26
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Tipping (ref25) 2003
References_xml – ident: ref5
  doi: 10.1109/34.598228
– volume: 1
  start-page: 211
  issue: Jun
  year: 2001
  ident: ref20
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– ident: ref27
  doi: 10.1109/ICSP.2016.7877926
– ident: ref6
  doi: 10.1109/34.908974
– start-page: 9446
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  year: 2018
  ident: ref23
  article-title: Deep image prior
– ident: ref31
  doi: 10.1109/TIP.2017.2681436
– ident: ref34
  doi: 10.1109/TSP.2017.2764855
– ident: ref3
  doi: 10.1109/78.258082
– ident: ref8
  doi: 10.1109/TNNLS.2019.2904701
– ident: ref1
  doi: 10.1109/TIT.2005.862083
– ident: ref24
  doi: 10.1109/TCI.2025.3540706
– ident: ref13
  doi: 10.1109/TSMC.2018.2871267
– start-page: 276
  volume-title: Proc. Int. Workshop Artif. Intell. Statist.
  year: 2003
  ident: ref25
  article-title: Fast marginal likelihood maximisation for sparse Bayesian models
– ident: ref35
  doi: 10.1109/TNNLS.2020.3049056
– ident: ref30
  doi: 10.1109/TIP.2009.2032894
– ident: ref41
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref21
  doi: 10.1109/TSP.2012.2226449
– ident: ref22
  doi: 10.1109/TSP.2018.2883021
– ident: ref40
  doi: 10.1109/CVPR.2018.00418
– ident: ref10
  doi: 10.1038/s41467-019-12490-1
– ident: ref14
  doi: 10.1109/TNNLS.2015.2476656
– ident: ref28
  doi: 10.1109/TBME.2019.2953732
– ident: ref12
  doi: 10.1109/TCYB.2021.3090204
– ident: ref39
  doi: 10.1109/TSP.2004.831016
– ident: ref26
  doi: 10.1109/ICIP.2010.5650957
– ident: ref4
  doi: 10.1016/0169-7439(87)80084-9
– ident: ref42
  doi: 10.1109/LGRS.2023.3266008
– ident: ref29
  doi: 10.1109/SAM.2014.6882422
– ident: ref7
  doi: 10.1126/science.290.5500.2323
– ident: ref15
  doi: 10.1109/LGRS.2020.2982706
– ident: ref36
  doi: 10.1109/LSP.2022.3221344
– ident: ref18
  doi: 10.1109/GlobalSIP.2014.7032140
– ident: ref11
  doi: 10.1109/TSG.2019.2938733
– ident: ref2
  doi: 10.1109/TIT.2006.871582
– ident: ref19
  doi: 10.1007/s12532-011-0029-5
– ident: ref37
  doi: 10.1109/TIT.2019.2913109
– ident: ref9
  doi: 10.1016/j.ins.2021.06.096
– ident: ref32
  doi: 10.1109/ACSSC.2014.7094812
– ident: ref33
  doi: 10.1109/ICUWB.2016.7790383
– ident: ref16
  doi: 10.1007/s13042-020-01067-w
– ident: ref17
  doi: 10.1007/s11760-023-02496-0
– ident: ref38
  doi: 10.1109/LSP.2017.2692217
SSID ssj0014496
Score 2.4727929
Snippet Sparse Bayesian learning (SBL) is an algorithm for high-dimensional data processing based on Bayesian statistical theory. Its goal is to improve the...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1839
SubjectTerms Accuracy
Approximation algorithms
Bayes methods
block coordinate descent
Computational modeling
Data models
generalized approximate message passing
Image reconstruction
Inference algorithms
Message passing
Signal processing algorithms
Sparse Bayesian learning
Sparse matrices
Title Fast Robust Sparse Bayesian Learning Image Reconstruction Model Based on Generalized Approximate Message Passing
URI https://ieeexplore.ieee.org/document/10985865
Volume 73
WOSCitedRecordID wos001504043000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxHlJQ8sDC5p7NjOWBAVDFQVLVK3yE9UCdqKtgj49ZydFLowsCSxY1vRXWLf-XLfh9CFZowKpjUxMmGEWUuJktYSzpmEKs4y6iPZhOh25XCY96pk9ZgL45yLP5-5ZriMsXw7MYuwVQZfeC4zybN1tC4EL5O1fkIGjEUyLrAXKMmkGC5jkkl-Nej3wBNMsyYF44VVnGzLNWiFVCWuKZ2dfz7NLtqujEfcLrW9h9bceB9trUAKHqBpR83m-HGiF3DqT8FtdfhafbqQK4krMNVnfP8K0wgOrucvgCwOtGgv0HjmLIZiBUg9-oJiOyCPf4zAunX4IZCmQO8emN0wVh09dW4HN3ekYlUgBmanOdGcipaiViiwHqQwSjrmU6_SnDEnhU4zk0rDDYUD3NY-4R7cFiZbXuZcOXqIauPJ2B0h7FUgsAqRWaUYC2Du0jmhdJJ6C-te2kCXSzkX0xI8o4hOR5IXoJMi6KSodNJA9SDilXaldI__qD9Bm6F7uRtyimogLHeGNsz7fDR7O4-vxjeM1bfq
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UTdSDnxjxswcvHqZjfWu7IxoJRCBEMOG2dF1nSBSIgFH_el-7oVw8eNnWrm2W97b2vb6934-QywSACUgST0sfPEhT5imZph7nILGKQ8gyRzYhOh05GETdIlnd5cIYY9zPZ-baXrpYfjrWc7tVhl94JEPJw1WyZqmzinStn6ABgKPjQouBeaEUg0VU0o9u-r0u-oJBeM3QfIGClW2xCi3RqrhVpb7zz-fZJduF-Uhrub73yIoZ7ZOtJVDBAzKpq-mMPo6TOZ56E3RcDb1Vn8ZmS9ICTvWZNl9xIqHW-fyFkKWWGO0FG09NSrFYQFIPv7BYs9jjH0O0bw1tW9oU7N1FwxvHKpOn-n3_ruEVvAqexvlp5iWciapiqVBoP0ihlTSQBZkKIgAjRRKEOpCaa4YHvJ1kPs_QcQFZzWTElWGHpDQaj8wRoZmyFFY2NqsUgIVzl8YIlfhBluLKF1TI1ULO8SSHz4id2-FHMeoktjqJC51USNmKeKldLt3jP-ovyEaj327FrWbn4YRs2qHyvZFTUkLBmTOyrt9nw-nbuXtNvgFPBbsz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Robust+Sparse+Bayesian+Learning+Image+Reconstruction+Model+Based+on+Generalized+Approximate+Message+Passing&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Jin%2C+Wenzhe&rft.au=Lyu%2C+Wentao&rft.au=Guo%2C+Qing&rft.au=Deng%2C+Zhijiang&rft.date=2025&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=73&rft.spage=1839&rft.epage=1850&rft_id=info:doi/10.1109%2FTSP.2025.3566404&rft.externalDocID=10985865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon