Fast Robust Sparse Bayesian Learning Image Reconstruction Model Based on Generalized Approximate Message Passing
Sparse Bayesian learning (SBL) is an algorithm for high-dimensional data processing based on Bayesian statistical theory. Its goal is to improve the generalization ability and efficiency of the model by introducing sparsity, that is, retaining only some important features of the image. However, the...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on signal processing Jg. 73; S. 1839 - 1850 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
2025
|
| Schlagworte: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Sparse Bayesian learning (SBL) is an algorithm for high-dimensional data processing based on Bayesian statistical theory. Its goal is to improve the generalization ability and efficiency of the model by introducing sparsity, that is, retaining only some important features of the image. However, the traditional Sparse Bayesian Learning algorithm involves the operation of n<inline-formula><tex-math notation="LaTeX">\boldsymbol{\times}</tex-math></inline-formula>n dimensional matrix inversion during iterative update, which seriously affects the efficiency and speed of image reconstruction. In order to overcome the above defects, in this paper, we propose a fast robust Sparse Bayesian Learning image reconstruction model based on generalized approximate message passing (GAMP-FRSBL). The damped Gaussian generalized approximate message passing algorithm (Damped GGAMP) is introduced on the basis of SBL to avoid the matrix inversion problem. Combined with the convex optimization strategy, the block coordinate descent (BCD) method is used to iteratively update the parameters to improve the reconstruction efficiency of the model. Finally, experiments are conducted on Indor and Mondrian images, DOTA, COCO and UCM datasets to verify the effectiveness of the GAMP-FRSBL in image reconstruction. |
|---|---|
| AbstractList | Sparse Bayesian learning (SBL) is an algorithm for high-dimensional data processing based on Bayesian statistical theory. Its goal is to improve the generalization ability and efficiency of the model by introducing sparsity, that is, retaining only some important features of the image. However, the traditional Sparse Bayesian Learning algorithm involves the operation of n<inline-formula><tex-math notation="LaTeX">\boldsymbol{\times}</tex-math></inline-formula>n dimensional matrix inversion during iterative update, which seriously affects the efficiency and speed of image reconstruction. In order to overcome the above defects, in this paper, we propose a fast robust Sparse Bayesian Learning image reconstruction model based on generalized approximate message passing (GAMP-FRSBL). The damped Gaussian generalized approximate message passing algorithm (Damped GGAMP) is introduced on the basis of SBL to avoid the matrix inversion problem. Combined with the convex optimization strategy, the block coordinate descent (BCD) method is used to iteratively update the parameters to improve the reconstruction efficiency of the model. Finally, experiments are conducted on Indor and Mondrian images, DOTA, COCO and UCM datasets to verify the effectiveness of the GAMP-FRSBL in image reconstruction. |
| Author | Guo, Qing Lyu, Wentao Deng, Zhijiang Jin, Wenzhe |
| Author_xml | – sequence: 1 givenname: Wenzhe orcidid: 0009-0003-4320-2606 surname: Jin fullname: Jin, Wenzhe organization: School of Information Science and Technology, Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China – sequence: 2 givenname: Wentao orcidid: 0000-0002-1164-7534 surname: Lyu fullname: Lyu, Wentao email: alvinlwt@zstu.edu.cn organization: School of Information Science and Technology, Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China – sequence: 3 givenname: Qing orcidid: 0000-0002-1220-3804 surname: Guo fullname: Guo, Qing email: louiseu2013@163.com organization: Zhejiang Technical Innovation Service Center, Hangzhou, China – sequence: 4 givenname: Zhijiang orcidid: 0000-0001-6221-7051 surname: Deng fullname: Deng, Zhijiang email: dengzhijiang@fox-ess.com organization: Foxess Company Ltd., Wenzhou, China |
| BookMark | eNpNUE1rAjEUDKWFqu29hx7yB9Ymu9l8HK1UKygVtdDb8ja-lS2aXZIVan99I3ro5c0b3szwmD65dY1DQp44G3LOzMtmvRymLM2HWS6lYOKG9LgRPGFCydu4szxLcq2-7kk_hG_GuBBG9kg7gdDRVVMeI6xb8AHpK5ww1ODoHMG72u3o7AA7pCu0jQudP9qubhxdNFvcR3HALY10ig497OvfSEdt65uf-gAd0gWGcHYvIYSY9UDuKtgHfLzigHxO3jbj92T-MZ2NR_PEptx0SSkzxSHbKmBKaGVBo6jSClIjBGpVprlNtZU2iyOey4rJiishNK-0kYDZgLBLrvVNCB6rovXxIX8qOCvOjRWxseLcWHFtLFqeL5YaEf_Jjc61zLM_73lrCw |
| CODEN | ITPRED |
| Cites_doi | 10.1109/34.598228 10.1109/ICSP.2016.7877926 10.1109/34.908974 10.1109/TIP.2017.2681436 10.1109/TSP.2017.2764855 10.1109/78.258082 10.1109/TNNLS.2019.2904701 10.1109/TIT.2005.862083 10.1109/TCI.2025.3540706 10.1109/TSMC.2018.2871267 10.1109/TNNLS.2020.3049056 10.1109/TIP.2009.2032894 10.1007/978-3-319-10602-1_48 10.1109/TSP.2012.2226449 10.1109/TSP.2018.2883021 10.1109/CVPR.2018.00418 10.1038/s41467-019-12490-1 10.1109/TNNLS.2015.2476656 10.1109/TBME.2019.2953732 10.1109/TCYB.2021.3090204 10.1109/TSP.2004.831016 10.1109/ICIP.2010.5650957 10.1016/0169-7439(87)80084-9 10.1109/LGRS.2023.3266008 10.1109/SAM.2014.6882422 10.1126/science.290.5500.2323 10.1109/LGRS.2020.2982706 10.1109/LSP.2022.3221344 10.1109/GlobalSIP.2014.7032140 10.1109/TSG.2019.2938733 10.1109/TIT.2006.871582 10.1007/s12532-011-0029-5 10.1109/TIT.2019.2913109 10.1016/j.ins.2021.06.096 10.1109/ACSSC.2014.7094812 10.1109/ICUWB.2016.7790383 10.1007/s13042-020-01067-w 10.1007/s11760-023-02496-0 10.1109/LSP.2017.2692217 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TSP.2025.3566404 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 1850 |
| ExternalDocumentID | 10_1109_TSP_2025_3566404 10985865 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shaoxing Science and Technology Plan Project grantid: 2022B41011 – fundername: Key Research and Development Program Foundation of Zhejiang grantid: 2022C01079; 2024C01060 – fundername: National Natural Science Foundation of China grantid: U1709219; 61601410 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c219t-b6371a3d7a07487ca8e4f2fa2944e87b25c28c6c38c687cbf06f174481f896ae3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001504043000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Sat Nov 29 07:50:50 EST 2025 Wed Aug 27 01:38:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c219t-b6371a3d7a07487ca8e4f2fa2944e87b25c28c6c38c687cbf06f174481f896ae3 |
| ORCID | 0000-0002-1220-3804 0009-0003-4320-2606 0000-0002-1164-7534 0000-0001-6221-7051 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10985865 crossref_primary_10_1109_TSP_2025_3566404 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 Ulyanov (ref23) 2018 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Tipping (ref20) 2001; 1 ref24 ref26 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Tipping (ref25) 2003 |
| References_xml | – ident: ref5 doi: 10.1109/34.598228 – volume: 1 start-page: 211 issue: Jun year: 2001 ident: ref20 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – ident: ref27 doi: 10.1109/ICSP.2016.7877926 – ident: ref6 doi: 10.1109/34.908974 – start-page: 9446 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. year: 2018 ident: ref23 article-title: Deep image prior – ident: ref31 doi: 10.1109/TIP.2017.2681436 – ident: ref34 doi: 10.1109/TSP.2017.2764855 – ident: ref3 doi: 10.1109/78.258082 – ident: ref8 doi: 10.1109/TNNLS.2019.2904701 – ident: ref1 doi: 10.1109/TIT.2005.862083 – ident: ref24 doi: 10.1109/TCI.2025.3540706 – ident: ref13 doi: 10.1109/TSMC.2018.2871267 – start-page: 276 volume-title: Proc. Int. Workshop Artif. Intell. Statist. year: 2003 ident: ref25 article-title: Fast marginal likelihood maximisation for sparse Bayesian models – ident: ref35 doi: 10.1109/TNNLS.2020.3049056 – ident: ref30 doi: 10.1109/TIP.2009.2032894 – ident: ref41 doi: 10.1007/978-3-319-10602-1_48 – ident: ref21 doi: 10.1109/TSP.2012.2226449 – ident: ref22 doi: 10.1109/TSP.2018.2883021 – ident: ref40 doi: 10.1109/CVPR.2018.00418 – ident: ref10 doi: 10.1038/s41467-019-12490-1 – ident: ref14 doi: 10.1109/TNNLS.2015.2476656 – ident: ref28 doi: 10.1109/TBME.2019.2953732 – ident: ref12 doi: 10.1109/TCYB.2021.3090204 – ident: ref39 doi: 10.1109/TSP.2004.831016 – ident: ref26 doi: 10.1109/ICIP.2010.5650957 – ident: ref4 doi: 10.1016/0169-7439(87)80084-9 – ident: ref42 doi: 10.1109/LGRS.2023.3266008 – ident: ref29 doi: 10.1109/SAM.2014.6882422 – ident: ref7 doi: 10.1126/science.290.5500.2323 – ident: ref15 doi: 10.1109/LGRS.2020.2982706 – ident: ref36 doi: 10.1109/LSP.2022.3221344 – ident: ref18 doi: 10.1109/GlobalSIP.2014.7032140 – ident: ref11 doi: 10.1109/TSG.2019.2938733 – ident: ref2 doi: 10.1109/TIT.2006.871582 – ident: ref19 doi: 10.1007/s12532-011-0029-5 – ident: ref37 doi: 10.1109/TIT.2019.2913109 – ident: ref9 doi: 10.1016/j.ins.2021.06.096 – ident: ref32 doi: 10.1109/ACSSC.2014.7094812 – ident: ref33 doi: 10.1109/ICUWB.2016.7790383 – ident: ref16 doi: 10.1007/s13042-020-01067-w – ident: ref17 doi: 10.1007/s11760-023-02496-0 – ident: ref38 doi: 10.1109/LSP.2017.2692217 |
| SSID | ssj0014496 |
| Score | 2.4727929 |
| Snippet | Sparse Bayesian learning (SBL) is an algorithm for high-dimensional data processing based on Bayesian statistical theory. Its goal is to improve the... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1839 |
| SubjectTerms | Accuracy Approximation algorithms Bayes methods block coordinate descent Computational modeling Data models generalized approximate message passing Image reconstruction Inference algorithms Message passing Signal processing algorithms Sparse Bayesian learning Sparse matrices |
| Title | Fast Robust Sparse Bayesian Learning Image Reconstruction Model Based on Generalized Approximate Message Passing |
| URI | https://ieeexplore.ieee.org/document/10985865 |
| Volume | 73 |
| WOSCitedRecordID | wos001504043000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxHlJQ8sDC5p7NjOWBAVDFQVLVK3yE9UCdqKtgj49ZydFLowsCSxY1vRXWLf-XLfh9CFZowKpjUxMmGEWUuJktYSzpmEKs4y6iPZhOh25XCY96pk9ZgL45yLP5-5ZriMsXw7MYuwVQZfeC4zybN1tC4EL5O1fkIGjEUyLrAXKMmkGC5jkkl-Nej3wBNMsyYF44VVnGzLNWiFVCWuKZ2dfz7NLtqujEfcLrW9h9bceB9trUAKHqBpR83m-HGiF3DqT8FtdfhafbqQK4krMNVnfP8K0wgOrucvgCwOtGgv0HjmLIZiBUg9-oJiOyCPf4zAunX4IZCmQO8emN0wVh09dW4HN3ekYlUgBmanOdGcipaiViiwHqQwSjrmU6_SnDEnhU4zk0rDDYUD3NY-4R7cFiZbXuZcOXqIauPJ2B0h7FUgsAqRWaUYC2Du0jmhdJJ6C-te2kCXSzkX0xI8o4hOR5IXoJMi6KSodNJA9SDilXaldI__qD9Bm6F7uRtyimogLHeGNsz7fDR7O4-vxjeM1bfq |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UTdSDnxjxswcvHqZjfWu7IxoJRCBEMOG2dF1nSBSIgFH_el-7oVw8eNnWrm2W97b2vb6934-QywSACUgST0sfPEhT5imZph7nILGKQ8gyRzYhOh05GETdIlnd5cIYY9zPZ-baXrpYfjrWc7tVhl94JEPJw1WyZqmzinStn6ABgKPjQouBeaEUg0VU0o9u-r0u-oJBeM3QfIGClW2xCi3RqrhVpb7zz-fZJduF-Uhrub73yIoZ7ZOtJVDBAzKpq-mMPo6TOZ56E3RcDb1Vn8ZmS9ICTvWZNl9xIqHW-fyFkKWWGO0FG09NSrFYQFIPv7BYs9jjH0O0bw1tW9oU7N1FwxvHKpOn-n3_ruEVvAqexvlp5iWciapiqVBoP0ihlTSQBZkKIgAjRRKEOpCaa4YHvJ1kPs_QcQFZzWTElWGHpDQaj8wRoZmyFFY2NqsUgIVzl8YIlfhBluLKF1TI1ULO8SSHz4id2-FHMeoktjqJC51USNmKeKldLt3jP-ovyEaj327FrWbn4YRs2qHyvZFTUkLBmTOyrt9nw-nbuXtNvgFPBbsz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Robust+Sparse+Bayesian+Learning+Image+Reconstruction+Model+Based+on+Generalized+Approximate+Message+Passing&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Jin%2C+Wenzhe&rft.au=Lyu%2C+Wentao&rft.au=Guo%2C+Qing&rft.au=Deng%2C+Zhijiang&rft.date=2025&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=73&rft.spage=1839&rft.epage=1850&rft_id=info:doi/10.1109%2FTSP.2025.3566404&rft.externalDocID=10985865 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |