Nearly-Linear Time Seeded Extractors With Short Seeds

Seeded extractors are fundamental objects in pseudorandomness and cryptography, and a deep line of work has designed polynomial-time seeded extractors with nearly-optimal parameters. However, existing constructions of seeded extractors with short seed length and large output length run in time <i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 71; číslo 11; s. 9028 - 9054
Hlavní autoři: Doron, Dean, Ribeiro, Joao
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.11.2025
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Seeded extractors are fundamental objects in pseudorandomness and cryptography, and a deep line of work has designed polynomial-time seeded extractors with nearly-optimal parameters. However, existing constructions of seeded extractors with short seed length and large output length run in time <inline-formula> <tex-math notation="LaTeX">\Omega (n \log (1/\varepsilon)) </tex-math></inline-formula> and often slower, where n is the input source length and <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> is the error of the extractor. Since cryptographic applications of extractors require <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> to be small, the resulting runtime makes these extractors impractical. Motivated by this, we explore constructions of strong seeded extractors with short seeds computable in nearly-linear time <inline-formula> <tex-math notation="LaTeX">O(n \log ^{c} n) </tex-math></inline-formula>, for any error <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>. We show that an appropriate combination of modern condensers and classical approaches for constructing seeded extractors for high min-entropy sources yields such extractors. More precisely, we obtain strong extractors for n -bit sources with any min-entropy k and any target error <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> with seed length <inline-formula> <tex-math notation="LaTeX">d=O(\log (n/\varepsilon)) </tex-math></inline-formula> and output length <inline-formula> <tex-math notation="LaTeX">m=(1-\eta)k </tex-math></inline-formula> for an arbitrarily small constant <inline-formula> <tex-math notation="LaTeX">\eta \gt 0 </tex-math></inline-formula>, running in nearly-linear time. When k or <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> are very small, our construction requires a reasonable one-time preprocessing step. These extractors directly yield privacy amplification protocols with nearly-linear time complexity (possibly after a one-time preprocessing step), large output length, and low communication complexity. As a second contribution, we give an instantiation of Trevisan's extractor that can be evaluated in truly linear time in the RAM model, as long as the number of output bits is at most <inline-formula> <tex-math notation="LaTeX">\frac {n}{\log (1/\varepsilon)\mathrm {polylog}(n)} </tex-math></inline-formula>. Previous fast implementations of Trevisan's extractor ran in <inline-formula> <tex-math notation="LaTeX">\widetilde {O}(n) </tex-math></inline-formula> time in this setting.
AbstractList Seeded extractors are fundamental objects in pseudorandomness and cryptography, and a deep line of work has designed polynomial-time seeded extractors with nearly-optimal parameters. However, existing constructions of seeded extractors with short seed length and large output length run in time <inline-formula> <tex-math notation="LaTeX">\Omega (n \log (1/\varepsilon)) </tex-math></inline-formula> and often slower, where n is the input source length and <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> is the error of the extractor. Since cryptographic applications of extractors require <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> to be small, the resulting runtime makes these extractors impractical. Motivated by this, we explore constructions of strong seeded extractors with short seeds computable in nearly-linear time <inline-formula> <tex-math notation="LaTeX">O(n \log ^{c} n) </tex-math></inline-formula>, for any error <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>. We show that an appropriate combination of modern condensers and classical approaches for constructing seeded extractors for high min-entropy sources yields such extractors. More precisely, we obtain strong extractors for n -bit sources with any min-entropy k and any target error <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> with seed length <inline-formula> <tex-math notation="LaTeX">d=O(\log (n/\varepsilon)) </tex-math></inline-formula> and output length <inline-formula> <tex-math notation="LaTeX">m=(1-\eta)k </tex-math></inline-formula> for an arbitrarily small constant <inline-formula> <tex-math notation="LaTeX">\eta \gt 0 </tex-math></inline-formula>, running in nearly-linear time. When k or <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> are very small, our construction requires a reasonable one-time preprocessing step. These extractors directly yield privacy amplification protocols with nearly-linear time complexity (possibly after a one-time preprocessing step), large output length, and low communication complexity. As a second contribution, we give an instantiation of Trevisan's extractor that can be evaluated in truly linear time in the RAM model, as long as the number of output bits is at most <inline-formula> <tex-math notation="LaTeX">\frac {n}{\log (1/\varepsilon)\mathrm {polylog}(n)} </tex-math></inline-formula>. Previous fast implementations of Trevisan's extractor ran in <inline-formula> <tex-math notation="LaTeX">\widetilde {O}(n) </tex-math></inline-formula> time in this setting.
Author Doron, Dean
Ribeiro, Joao
Author_xml – sequence: 1
  givenname: Dean
  orcidid: 0000-0003-1862-8341
  surname: Doron
  fullname: Doron, Dean
  email: deand@bgu.ac.il
  organization: Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
– sequence: 2
  givenname: Joao
  orcidid: 0000-0002-9870-0501
  surname: Ribeiro
  fullname: Ribeiro, Joao
  email: jribeiro@tecnico.ulisboa.pt
  organization: Instituto de Telecomunicações, Lisbon, Portugal
BookMark eNpFj01Lw0AQhhepYFu9e_CQP5A6s1_ZPUqpWgh6aMRjmCQTGmkb2c3B_ntTW_A0M7zvM_DMxOTQH1iIe4QFIvjHYl0sJEizUBYMWrgSUzQmS701eiKmAOhSr7W7EbMYv8ZTG5RTYd6Ywu6Y5t1hXJKi23OyYW64SVY_Q6B66ENMPrthm2y2fRj-wngrrlvaRb67zLn4eF4Vy9c0f39ZL5_ytJboh5S8a6SECivVkFKgLHtrrSO0mhU1svaVZAeaM0Ouokw7aMi0CrxmSaTmAs5_69DHGLgtv0O3p3AsEcqTdjlqlyft8qI9Ig9npGPm_zqitl469Qsl4lRv
CODEN IETTAW
Cites_doi 10.1016/0020-0190(94)00171-T
10.1007/s00037-007-0238-5
10.1137/060651380
10.1109/FOCS.2008.23
10.1137/100813683
10.1090/S0025-5718-1990-0993933-0
10.1145/1059513.1059516
10.1561/0400000010
10.1137/120871626
10.1007/s004930200006
10.1007/3-540-45708-9_17
10.1137/18m1176622
10.22331/q-2025-01-08-1584
10.2307/2003354
10.1109/CCC.2002.1004352
10.1109/18.476316
10.1016/j.jcss.2005.05.010
10.1145/780542.780630
10.1007/s004930050049
10.1007/11672142_55
10.1007/BF01940870
10.1007/s00145-003-0051-5
10.1006/jcss.1997.1546
10.1109/18.556668
10.1109/CCC.2012.25
10.1137/0217012
10.4086/toc.2007.v003a006
10.1007/s00493-020-4429-x
10.1017/CBO9781139856065
10.1017/CBO9781139165464
10.1016/j.jco.2019.03.004
10.1145/1538902.1538904
10.1137/s0097539794268765
10.4007/annals.2004.160.781
10.1137/0217015
10.1007/978-3-030-26951-7_17
10.1007/BFb0052244
10.1007/978-3-662-43948-7_71
10.1145/502090.502099
10.1109/TIT.2011.2158473
10.1137/s0895480197329508
10.1137/0217014
10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z
10.1145/2422436.2422496
10.1145/3055399.3055408
10.4171/jems/861
10.1006/jcss.2002.1824
10.1145/3505584
10.1006/jcss.1996.0004
10.1007/s00145-003-0237-x
10.1145/3555307
10.1137/100783704
10.1109/TIT.1972.1054893
10.1016/S0022-0000(74)80029-2
10.1007/BF00289470
10.1109/TIT.2016.2526018
10.22331/q-2023-03-30-969
10.4007/annals.2021.193.2.4
10.1145/3519935.3519972
10.1007/978-3-030-84259-8_15
10.1137/s009753979630091x
10.1007/978-3-030-26948-7_15
10.1137/S0097539703431032
10.1137/s0097539705447141
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIT.2025.3605160
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 9054
ExternalDocumentID 10_1109_TIT_2025_3605160
11146928
Genre orig-research
GrantInformation_xml – fundername: NSF-BSF
  grantid: 2022644
– fundername: U.S. Department of Energy through the Simons Institute for the Theory of Computing
  grantid: DESC0024124
– fundername: FCT/MECI through national funds and, when applicable, co-funded by EU funds through the Instituto de Telecomunicações
  grantid: UID/50008
– fundername: NOVA LINCS through Fundação para a Ciência e a Tecnologia (FCT)
  grantid: UIDB/04516/2020
  funderid: 10.13039/501100001871
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
ID FETCH-LOGICAL-c219t-a98d220b1b3da33036e96668a164e3ad2c9b2e804e75a8ba7480da5f3094e2aa3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001605552300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sat Nov 29 06:56:51 EST 2025
Wed Nov 05 07:07:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c219t-a98d220b1b3da33036e96668a164e3ad2c9b2e804e75a8ba7480da5f3094e2aa3
ORCID 0000-0003-1862-8341
0000-0002-9870-0501
PageCount 27
ParticipantIDs ieee_primary_11146928
crossref_primary_10_1109_TIT_2025_3605160
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
Raz (ref24) 2002; 65
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
Narayanan (ref76) 2014
ref19
Alrabiah (ref36) 2025
ref18
Goldreich (ref32); 33
ref51
ref50
Shoup (ref70) 2005
ref46
ref45
ref48
ref42
ref41
ref44
ref43
Hązła (ref67); 30
ref49
ref8
Doron (ref47)
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref78
Canetti (ref77) 1995; 53
ref75
ref30
ref74
Huang (ref34) 2022
Mauerer (ref21) 2012
Golovnev (ref37) 2024
ref2
ref39
ref38
Xun (ref68)
ref71
Kalev (ref26) 2022
ref73
ref72
Alrabiah (ref35)
ref23
ref25
ref69
ref20
ref63
ref22
ref66
ref65
Cheng (ref33) 2024
ref28
ref27
ref29
ref60
ref62
Cheng (ref31) 2018
ref61
Bogdanov (ref64) 2012
Nisan (ref1) 1996; 52
References_xml – volume: 53
  start-page: 17
  issue: 1
  year: 1995
  ident: ref77
  article-title: Lower bounds for sampling algorithms for estimating the average
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(94)00171-T
– ident: ref39
  doi: 10.1007/s00037-007-0238-5
– ident: ref56
  doi: 10.1137/060651380
– ident: ref45
  doi: 10.1109/FOCS.2008.23
– ident: ref25
  doi: 10.1137/100813683
– ident: ref71
  doi: 10.1090/S0025-5718-1990-0993933-0
– ident: ref15
  doi: 10.1145/1059513.1059516
– ident: ref62
  doi: 10.1561/0400000010
– ident: ref40
  doi: 10.1137/120871626
– ident: ref78
  doi: 10.1007/s004930200006
– ident: ref28
  doi: 10.1007/3-540-45708-9_17
– volume: 30
  start-page: 392
  volume-title: Proc. Symp. Theor. Aspects Comput. Sci. (STACS)
  ident: ref67
  article-title: Upper tail estimates with combinatorial proofs
– ident: ref8
  doi: 10.1137/18m1176622
– ident: ref23
  doi: 10.22331/q-2025-01-08-1584
– ident: ref52
  doi: 10.2307/2003354
– ident: ref27
  doi: 10.1109/CCC.2002.1004352
– ident: ref4
  doi: 10.1109/18.476316
– ident: ref14
  doi: 10.1016/j.jcss.2005.05.010
– ident: ref16
  doi: 10.1145/780542.780630
– ident: ref61
  doi: 10.1007/s004930050049
– start-page: 69:1
  volume-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM)
  year: 2024
  ident: ref33
  article-title: Randomness extractors in AC0 and NC1: Optimal up to constant factors
– ident: ref38
  doi: 10.1007/11672142_55
– ident: ref43
  doi: 10.1007/BF01940870
– start-page: 37:1
  volume-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM)
  year: 2018
  ident: ref31
  article-title: Randomness extraction in AC0 and with small locality
– ident: ref73
  doi: 10.1007/s00145-003-0051-5
– ident: ref12
  doi: 10.1006/jcss.1997.1546
– ident: ref66
  doi: 10.1109/18.556668
– ident: ref19
  doi: 10.1109/CCC.2012.25
– ident: ref72
  doi: 10.1137/0217012
– year: 2012
  ident: ref21
  article-title: A modular framework for randomness extraction based on Trevisan’s construction
  publication-title: arXiv:1212.0520
– start-page: 12:1
  year: 2022
  ident: ref26
  article-title: Unbalanced expanders from multiplicity codes
  publication-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM)
– ident: ref59
  doi: 10.4086/toc.2007.v003a006
– ident: ref60
  doi: 10.1007/s00493-020-4429-x
– ident: ref46
  doi: 10.1017/CBO9781139856065
– volume-title: A Computational Introduction to Number Theory and Algebra
  year: 2005
  ident: ref70
  doi: 10.1017/CBO9781139165464
– ident: ref50
  doi: 10.1016/j.jco.2019.03.004
– ident: ref17
  doi: 10.1145/1538902.1538904
– ident: ref58
  doi: 10.1137/s0097539794268765
– ident: ref69
  doi: 10.4007/annals.2004.160.781
– ident: ref2
  doi: 10.1137/0217015
– ident: ref5
  doi: 10.1007/978-3-030-26951-7_17
– ident: ref57
  doi: 10.1007/BFb0052244
– ident: ref41
  doi: 10.1007/978-3-662-43948-7_71
– start-page: 11:1
  volume-title: Proc. Comput. Complex. Conf. (CCC)
  ident: ref47
  article-title: Derandomization with minimal memory footprint
– ident: ref13
  doi: 10.1145/502090.502099
– start-page: 6:1
  volume-title: Proc. 40th Comput. Complex. Conf. (CCC)
  ident: ref68
  article-title: Near-optimal averaging samplers and matrix samplers
– start-page: 10:1
  volume-title: Proc. Int. Colloq. Automata
  ident: ref35
  article-title: Low-degree polynomials extract from local sources
– ident: ref48
  doi: 10.1109/TIT.2011.2158473
– ident: ref10
  doi: 10.1137/s0895480197329508
– ident: ref3
  doi: 10.1137/0217014
– volume-title: Topics in (and Out) the Theory of Computing: Lecture Notes
  year: 2012
  ident: ref64
– ident: ref44
  doi: 10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z
– ident: ref30
  doi: 10.1145/2422436.2422496
– ident: ref63
  doi: 10.1145/3055399.3055408
– ident: ref75
  doi: 10.4171/jems/861
– volume: 65
  start-page: 97
  issue: 1
  year: 2002
  ident: ref24
  article-title: Extracting all the randomness and reducing the error in Trevisan’s extractors
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2002.1824
– volume: 33
  start-page: 601
  volume-title: Proc. Conf. Comput. Complex. (CCC)
  ident: ref32
  article-title: On randomness extraction in AC0
– start-page: 9:1
  year: 2022
  ident: ref34
  article-title: Affine extractors and AC0-parity, "Affine extractors and AC0-parity
  publication-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM)
– ident: ref51
  doi: 10.1145/3505584
– volume: 52
  start-page: 43
  issue: 1
  year: 1996
  ident: ref1
  article-title: Randomness is linear in space
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1996.0004
– ident: ref29
  doi: 10.1007/s00145-003-0237-x
– ident: ref42
  doi: 10.1145/3555307
– volume-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM)
  year: 2025
  ident: ref36
  article-title: Low-degree polynomials are good extractors
– ident: ref18
  doi: 10.1137/100783704
– ident: ref65
  doi: 10.1109/TIT.1972.1054893
– ident: ref54
  doi: 10.1016/S0022-0000(74)80029-2
– ident: ref53
  doi: 10.1007/BF00289470
– ident: ref20
  doi: 10.1109/TIT.2016.2526018
– start-page: 41:1
  volume-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM)
  year: 2024
  ident: ref37
  article-title: Hilbert functions and low-degree randomness extractors
– volume-title: Improving the Speed and Accuracy of the Miller-Rabin Primality Test
  year: 2014
  ident: ref76
– ident: ref22
  doi: 10.22331/q-2023-03-30-969
– ident: ref55
  doi: 10.4007/annals.2021.193.2.4
– ident: ref9
  doi: 10.1145/3519935.3519972
– ident: ref6
  doi: 10.1007/978-3-030-84259-8_15
– ident: ref11
  doi: 10.1137/s009753979630091x
– ident: ref7
  doi: 10.1007/978-3-030-26948-7_15
– ident: ref49
  doi: 10.1137/S0097539703431032
– ident: ref74
  doi: 10.1137/s0097539705447141
SSID ssj0014512
Score 2.4916508
Snippet Seeded extractors are fundamental objects in pseudorandomness and cryptography, and a deep line of work has designed polynomial-time seeded extractors with...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 9028
SubjectTerms Agricultural machinery
Circuits
Complexity theory
Computational modeling
Cryptography
Data mining
nearly-linear time algorithms
Privacy
privacy amplification
Random access memory
Runtime
Seeded randomness extractors
short seeds
Title Nearly-Linear Time Seeded Extractors With Short Seeds
URI https://ieeexplore.ieee.org/document/11146928
Volume 71
WOSCitedRecordID wos001605552300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RigEGHqWI8pIHFoa0jp2HPSLUCiRUIbVAt8ixHbVLi9oU8fM5OyntwsBmJU4UnXW--3L-vgO4SziXhdBRwHiMACUyGvdBFQaaampkgSHfH_l_f0mHQzGZyNearO65MNZaf_jMdt3Q1_LNQq_dr7Je6Ci0kokGNNI0qchavyWDKA4rafAQPRhBx6YmSWVv_DxGJMjiLsfkPfRqlNsYtNNUxceUwfE_v-YEjurkkTxUq30Ke3beguNNYwZS-2kLDndUBs8gHlqnYhwg7MQBcaQPMsKgZQ3pf5fLquEO-ZiVUzKaYjbub67a8Dbojx-fgrpbQqBx1ykDJYVhjOZhzo3iLjJZhDKJUAiILFeGaZkzK2hk01iJXKWRoEbFBUeAZ5lS_Bya88XcXgARWiBKRN9McJBzJQqZGOOk9AS-ltIO3G_sl31WohiZBxNUZmjrzNk6q23dgbYz3XZebbXLP65fwYF7vKL7XUOzXK7tDezrr3K2Wt76Jf8BolWmlg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RNFEPoogRf-7gxcOgazdoj8ZAICIxAZXb0rVd4AIGhvHP97UbwsWDt5etaZbXvL73rf2-B3DfZEykXIU-ZREClFAr3Adl4CuiiBYppnx35f-93xoM-HgsXguyuuPCGGPc5TNTt6Y7y9dztbK_yhqBpdAKyndhLwpDSnK61u-hQRgFuTh4gDGMsGN9KklEY9QbIRakUZ1h-R44PcpNFtpqq-KySqf8z-85geOifPQe8_U-hR0zq0B53ZrBKyK1AkdbOoNnEA2M1TH2EXii4VnahzfEtGW01_7OFnnLHe9jmk284QTrcfdyWYW3Tnv01PWLfgm-wn0n86XgmlKSBAnTktncZBDMNLlESGSY1FSJhBpOQtOKJE9kK-REyyhlCPEMlZKdQ2k2n5kL8LjiiBMxOptoJEzyVDS1tmJ6HKclpAYPa__Fn7ksRuzgBBEx-jq2vo4LX9egal23GVd47fKP53dw0B299ON-b_B8BYd2qpz8dw2lbLEyN7CvvrLpcnHrlv8HgLWp3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nearly-Linear+Time+Seeded+Extractors+With+Short+Seeds&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Doron%2C+Dean&rft.au=Ribeiro%2C+Joao&rft.date=2025-11-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=71&rft.issue=11&rft.spage=9028&rft.epage=9054&rft_id=info:doi/10.1109%2FTIT.2025.3605160&rft.externalDocID=11146928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon