Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm
This letter investigates the convergence and concentration properties of the Stochastic Mirror Descent (SMD) algorithm utilizing biased stochastic subgradients. We establish the almost sure convergence of the algorithm's iterates under the assumption of diminishing bias. Furthermore, we derive...
Uloženo v:
| Vydáno v: | IEEE control systems letters Ročník 8; s. 2397 - 2402 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2024
|
| Témata: | |
| ISSN: | 2475-1456, 2475-1456 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This letter investigates the convergence and concentration properties of the Stochastic Mirror Descent (SMD) algorithm utilizing biased stochastic subgradients. We establish the almost sure convergence of the algorithm's iterates under the assumption of diminishing bias. Furthermore, we derive concentration bounds for the discrepancy between the iterates' function values and the optimal value, based on standard assumptions. Subsequently, leveraging the assumption of Sub-Gaussian noise in stochastic subgradients, we present refined concentration bounds for this discrepancy. |
|---|---|
| ISSN: | 2475-1456 2475-1456 |
| DOI: | 10.1109/LCSYS.2024.3482148 |