Intrusion Detection System After Data Augmentation Schemes Based on the VAE and CVAE

Industrial Internet of Things (IoT) is the most rapidly developing industry in the current IoT industry, and the intrusion detection system (IDS) remains one of the key technologies for industrial IoT security protection. Researchers have considered applying algorithms such as machine learning and d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on reliability Ročník 71; číslo 2; s. 1000 - 1010
Hlavní autoři: Liu, Chang, Antypenko, Ruslan, Sushko, Iryna, Zakharchenko, Oksana
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9529, 1558-1721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Industrial Internet of Things (IoT) is the most rapidly developing industry in the current IoT industry, and the intrusion detection system (IDS) remains one of the key technologies for industrial IoT security protection. Researchers have considered applying algorithms such as machine learning and deep learning to network IDSs to cope with complex and changing network environments and to automatically extract key features from high-dimensional feature data. However, in the real industrial IoT environment, data imbalance is the main factor that affects the performance of the deep-learning-based IDS. In this article, we study the network intrusion detection model based on data level. Three data-based research schemes are constructed step by step in this article, which are a data augmentation scheme based on the variational autoencoder (VAE), a data-balancing scheme based on the conditional VAE, and a data-balancing scheme based on random undersampling and conditional VAE. The three data-level-based schemes are combined with the deep-learning-based IDS. In this article, we build experiments based on the CSE-CIC-IDS2018 dataset to verify the effectiveness of three data processing schemes. After data enhancement through the third scheme, the Macro-F1-score of the convolutional-neural-network-based IDS model improved by 3.75% and the Macro-F1-score of the gated-recurrent-unit-based IDS model improved by 5.32%.
AbstractList Industrial Internet of Things (IoT) is the most rapidly developing industry in the current IoT industry, and the intrusion detection system (IDS) remains one of the key technologies for industrial IoT security protection. Researchers have considered applying algorithms such as machine learning and deep learning to network IDSs to cope with complex and changing network environments and to automatically extract key features from high-dimensional feature data. However, in the real industrial IoT environment, data imbalance is the main factor that affects the performance of the deep-learning-based IDS. In this article, we study the network intrusion detection model based on data level. Three data-based research schemes are constructed step by step in this article, which are a data augmentation scheme based on the variational autoencoder (VAE), a data-balancing scheme based on the conditional VAE, and a data-balancing scheme based on random undersampling and conditional VAE. The three data-level-based schemes are combined with the deep-learning-based IDS. In this article, we build experiments based on the CSE-CIC-IDS2018 dataset to verify the effectiveness of three data processing schemes. After data enhancement through the third scheme, the Macro-F1-score of the convolutional-neural-network-based IDS model improved by 3.75% and the Macro-F1-score of the gated-recurrent-unit-based IDS model improved by 5.32%.
Author Antypenko, Ruslan
Sushko, Iryna
Liu, Chang
Zakharchenko, Oksana
Author_xml – sequence: 1
  givenname: Chang
  orcidid: 0000-0003-2485-1339
  surname: Liu
  fullname: Liu, Chang
  email: liuchang@gdou.edu.cn
  organization: Institute of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, China
– sequence: 2
  givenname: Ruslan
  surname: Antypenko
  fullname: Antypenko, Ruslan
  email: r.antypenko@kpi.ua
  organization: Radio Engineering Faculty, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute,", Kyiv, Ukraine
– sequence: 3
  givenname: Iryna
  surname: Sushko
  fullname: Sushko, Iryna
  email: sushko@ros.kpi.ua
  organization: Radio Engineering Faculty, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute,", Kyiv, Ukraine
– sequence: 4
  givenname: Oksana
  surname: Zakharchenko
  fullname: Zakharchenko, Oksana
  email: novikos1975@gmail.com
  organization: Radio Engineering Faculty, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute,", Kyiv, Ukraine
BookMark eNp9kD1PwzAQhi1UJNrCzMBiiTmtz4njeAxt-ZAqIZXAGpn4QlM1SbGdof-eVKkYGJju633udO-EjJq2QUJugc0AmJpnmxlnnM9CiKNEygsyBiGSACSHERkzBkmgBFdXZOLcri-jSCVjkr003nauahu6RI-FP2VvR-expmnp0dKl9pqm3VeNjdfDuNhijY4-aIeG9g2_RfqRrqhuDF30yTW5LPXe4c05Tsn74ypbPAfr16eXRboOCg7KB1FZRkYXRooQEzBKMRlpZAVTmmsdCvEpS85iCFlijGaxEEZEWgLKpAgZmHBK7oe9B9t-d-h8vms72_Qncx5LnvQsQK8Sg6qwrXMWy7yohk-81dU-B5afDMyzTX4yMD8b2HPzP9zBVrW2x3-Iu4GoEPFXrWQMSqjwBxiyeyI
CODEN IERQAD
CitedBy_id crossref_primary_10_1109_JIOT_2024_3380822
crossref_primary_10_1631_FITEE_2400467
crossref_primary_10_1016_j_nxmate_2025_100683
crossref_primary_10_1016_j_neunet_2024_107064
crossref_primary_10_32604_cmc_2023_046055
crossref_primary_10_1109_MWC_004_2400017
crossref_primary_10_1109_JSTSP_2022_3224597
crossref_primary_10_1145_3695879
crossref_primary_10_1016_j_jnca_2024_103925
crossref_primary_10_1016_j_jnca_2024_103926
crossref_primary_10_1371_journal_pone_0331065
crossref_primary_10_1109_ACCESS_2023_3324657
crossref_primary_10_1016_j_knosys_2024_112563
crossref_primary_10_3390_app15063362
crossref_primary_10_1016_j_neucom_2025_131063
crossref_primary_10_3390_electronics14173513
crossref_primary_10_1016_j_ijepes_2024_110190
crossref_primary_10_1016_j_jnca_2025_104256
crossref_primary_10_1109_TII_2024_3403267
crossref_primary_10_1115_1_4065212
crossref_primary_10_1007_s13042_025_02726_6
crossref_primary_10_1016_j_cose_2024_104005
crossref_primary_10_1109_ACCESS_2024_3426279
crossref_primary_10_1016_j_iot_2024_101397
crossref_primary_10_3390_electronics13214253
crossref_primary_10_1109_ACCESS_2025_3598777
crossref_primary_10_3390_bioengineering10121348
crossref_primary_10_1007_s12530_024_09644_y
crossref_primary_10_1016_j_jksuci_2023_101796
crossref_primary_10_1186_s42400_025_00364_7
crossref_primary_10_1109_JSEN_2024_3503595
crossref_primary_10_3390_sym17040526
crossref_primary_10_1109_ACCESS_2025_3564985
crossref_primary_10_1109_TCE_2023_3331907
crossref_primary_10_1109_JSEN_2025_3526997
crossref_primary_10_1016_j_est_2025_117994
crossref_primary_10_1109_TR_2025_3528256
crossref_primary_10_1016_j_procs_2025_03_341
crossref_primary_10_1109_TR_2025_3529303
crossref_primary_10_1016_j_anucene_2025_111502
crossref_primary_10_1109_ACCESS_2025_3529894
crossref_primary_10_1109_JIOT_2023_3342638
crossref_primary_10_23919_PCMP_2024_000213
crossref_primary_10_3390_jmse11010221
crossref_primary_10_1016_j_comnet_2025_111116
crossref_primary_10_1109_TIM_2024_3427765
crossref_primary_10_1016_j_knosys_2025_114285
crossref_primary_10_3390_app15031552
crossref_primary_10_1016_j_yofte_2025_104137
crossref_primary_10_3390_electronics14112103
crossref_primary_10_3390_electronics12183911
crossref_primary_10_1007_s11227_025_07842_2
crossref_primary_10_1007_s40747_024_01370_x
crossref_primary_10_1109_JIOT_2024_3360231
crossref_primary_10_1016_j_engappai_2025_111866
crossref_primary_10_1109_TVT_2024_3402366
Cites_doi 10.1109/TII.2020.3022432
10.23940/ijpe.21.06.p9.559568
10.1109/DCOSS.2011.5982146
10.1109/ITNEC52019.2021.9587207
10.1109/JIOT.2018.2873125
10.1109/JIOT.2016.2579198
10.1109/ICSPCC52875.2021.9564961
10.1016/j.cja.2021.08.016
10.1109/LCN.2012.6423615
10.1002/sec.1748
10.3390/s21020626
10.1109/ACCESS.2020.2973730
10.1016/j.measurement.2019.107450
10.1109/TR.2021.3062045
10.1109/ICC40277.2020.9149384
10.1109/MilCIS.2015.7348942
10.1007/978-3-319-46568-5_53
10.1155/2018/5680264
10.3390/sym13010004
10.32604/cmc.2020.010102
10.1016/j.ins.2019.10.069
10.1109/TIFS.2020.2991876
10.1145/3018896.3018901
10.1016/j.comnet.2020.107315
10.5220/0006639801080116
10.1109/TSUSC.2018.2793284
10.23940/ijpe.21.09.p1.741755
10.1007/s00779-019-01332-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TR.2022.3164877
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1721
EndPage 1010
ExternalDocumentID 10_1109_TR_2022_3164877
9761959
Genre orig-research
GrantInformation_xml – fundername: Enhancing School with Innovation of Guangdong Ocean University
  grantid: 230420023
– fundername: overseas famous teachers
  grantid: 2020A1414010380
– fundername: Guangdong Province Science and Technology Special Funds
  grantid: 2021A05237
– fundername: Scientific Research start-up funds of Guangdong Ocean University
  grantid: R20065
– fundername: Guangdong Science and Technology Department; Guangdong Provincial Science and Technology Department
  funderid: 10.13039/501100007162
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
OCL
P2P
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c219t-4ff4dacd753e81d99074ae0c09a2aa355b7f2061308dda0655d54a71e78c301d3
IEDL.DBID RIE
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788963000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9529
IngestDate Tue Sep 23 17:40:59 EDT 2025
Sat Nov 29 01:54:36 EST 2025
Tue Nov 18 22:31:04 EST 2025
Wed Aug 27 02:24:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c219t-4ff4dacd753e81d99074ae0c09a2aa355b7f2061308dda0655d54a71e78c301d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2485-1339
PQID 2672806111
PQPubID 85456
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TR_2022_3164877
crossref_primary_10_1109_TR_2022_3164877
ieee_primary_9761959
proquest_journals_2672806111
PublicationCentury 2000
PublicationDate 2022-June
2022-6-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on reliability
PublicationTitleAbbrev TR
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Sohn (ref30) 2015; 28
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ZHANG (ref4) 2020; 41
ref7
ref9
Kingma (ref29) 2013
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1109/TII.2020.3022432
– ident: ref1
  doi: 10.23940/ijpe.21.06.p9.559568
– ident: ref11
  doi: 10.1109/DCOSS.2011.5982146
– ident: ref23
  doi: 10.1109/ITNEC52019.2021.9587207
– ident: ref21
  doi: 10.1109/JIOT.2018.2873125
– ident: ref9
  doi: 10.1109/JIOT.2016.2579198
– ident: ref28
  doi: 10.1109/ICSPCC52875.2021.9564961
– ident: ref5
  doi: 10.1016/j.cja.2021.08.016
– ident: ref10
  doi: 10.1109/LCN.2012.6423615
– ident: ref8
  doi: 10.1002/sec.1748
– ident: ref18
  doi: 10.3390/s21020626
– ident: ref25
  doi: 10.1109/ACCESS.2020.2973730
– ident: ref14
  doi: 10.1016/j.measurement.2019.107450
– year: 2013
  ident: ref29
  article-title: Auto-encoding variational Bayes
– ident: ref3
  doi: 10.1109/TR.2021.3062045
– ident: ref17
  doi: 10.1109/ICC40277.2020.9149384
– volume: 28
  start-page: 3483
  year: 2015
  ident: ref30
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref6
  doi: 10.1109/MilCIS.2015.7348942
– ident: ref12
  doi: 10.1007/978-3-319-46568-5_53
– ident: ref13
  doi: 10.1155/2018/5680264
– ident: ref20
  doi: 10.3390/sym13010004
– ident: ref15
  doi: 10.32604/cmc.2020.010102
– volume: 41
  start-page: 12
  issue: 11
  year: 2020
  ident: ref4
  article-title: Electromagnetic signal modulation recognition technology based on lightweight deep neural network
  publication-title: J. Commun.
– ident: ref19
  doi: 10.1016/j.ins.2019.10.069
– ident: ref24
  doi: 10.1109/TIFS.2020.2991876
– ident: ref7
  doi: 10.1145/3018896.3018901
– ident: ref26
  doi: 10.1016/j.comnet.2020.107315
– ident: ref31
  doi: 10.5220/0006639801080116
– ident: ref16
  doi: 10.1109/TSUSC.2018.2793284
– ident: ref2
  doi: 10.23940/ijpe.21.09.p1.741755
– ident: ref27
  doi: 10.1007/s00779-019-01332-y
SSID ssj0014498
Score 2.578129
Snippet Industrial Internet of Things (IoT) is the most rapidly developing industry in the current IoT industry, and the intrusion detection system (IDS) remains one...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1000
SubjectTerms Algorithms
Balancing
Conditional variational autoencoder (CVAE)
Convolutional neural networks
Data augmentation
data imbalance
Data models
Data processing
Deep learning
Feature extraction
Industrial applications
Industrial development
Industrial Internet of Things
Internet of Things
intrusion detection system (IDS)
Intrusion detection systems
Machine learning
Machine learning algorithms
Neural networks
Training
variational autoencoder (VAE)
Title Intrusion Detection System After Data Augmentation Schemes Based on the VAE and CVAE
URI https://ieeexplore.ieee.org/document/9761959
https://www.proquest.com/docview/2672806111
Volume 71
WOSCitedRecordID wos000788963000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-1721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014498
  issn: 0018-9529
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLa2iQMceA3EYKAcOHCgW9ulTXMcewgkNKGpoN2qNEkREusQ2_j9OG1WgYADt6hNqsqu7e9rYhvgUqIxp6ZNqttLQ4cKL0Sbk67jh8iesyDMojJR-J5NJtFsxh9qcF3lwmiti8NnumOGxV6-Wsi1-VXW5YZzB7wOdcZYmatV7RhQyq3XRQMOfG7L-Hgu78ZT5IG-j_Q0RHjOvkWgoqXKDz9cBJfx3v9eax92LYgk_VLrB1DT-SHsfCkt2IT4LjfpFCh1MtSr4rxVTsry5KRv-oKToVgJ0l8_z232Ed5GBc71ktxgZFMELyA4JE_9ERG5IgMcHMHjeBQPbh3bQcGR6IlWDs0yqoRUyEk0AlNumLDQrnS58IVAqJGyzDcR3Y2UEohGAhVQwTzNIomWr3rH0MgXuT4BQj0lUxooX2QhRdgUpZx6EWdpRLlGGtSCzkaqibTlxU2Xi9ekoBkuT-JpYtSQWDW04Kpa8FZW1vh7atNIvZpmBd6C9kZtibW8ZeKHpuFWiC789PdVZ7Btnl0e92pDA5Whz2FLfqxelu8XxUf1CbQcx2w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQAIOvAZiMCAHDhzo1ob0keNgTJsYE5oK2q1KkxQhsYLYxu_HacMEAg7cojZRK7u2v6-JbYBTicacmjap7kUaOEx4AdqcdB0aIHvO_CCLykThQTgcRuMxv6vA-SIXRmtdHD7TTTMs9vLVi5ybX2Utbji3z5dg2WeMemW21mLPgDFu_S6asE-5LeTjubwVj5AJUooENUCAHn6LQUVTlR-euAgv3c3_vdgWbFgYSdql3rehovMdWP9SXLAGcT83CRUod9LRs-LEVU7KAuWkbTqDk46YCdKeP05s_hHeRhVO9JRcYmxTBC8gPCQP7WsickWucLAL993r-Krn2B4KjkRfNHNYljElpEJWohGacsOFhXalywUVAsFGGmbUxHQ3UkogHvGVz0To6TCSaPvqYg-q-Uuu94EwT8mU-YqKLGAInKKUMy_iYRoxrpEI1aH5KdVE2gLjps_Fc1IQDZcn8SgxakisGupwtljwWtbW-HtqzUh9Mc0KvA6NT7Ul1vamCQ1My60AnfjB76tOYLUX3w6SQX94cwhr5jnl4a8GVFEx-ghW5Pvsafp2XHxgH0CiyrM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+Detection+System+After+Data+Augmentation+Schemes+Based+on+the+VAE+and+CVAE&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Liu%2C+Chang&rft.au=Antypenko%2C+Ruslan&rft.au=Sushko%2C+Iryna&rft.au=Zakharchenko%2C+Oksana&rft.date=2022-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9529&rft.eissn=1558-1721&rft.volume=71&rft.issue=2&rft.spage=1000&rft_id=info:doi/10.1109%2FTR.2022.3164877&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon