Intrusion Detection System After Data Augmentation Schemes Based on the VAE and CVAE
Industrial Internet of Things (IoT) is the most rapidly developing industry in the current IoT industry, and the intrusion detection system (IDS) remains one of the key technologies for industrial IoT security protection. Researchers have considered applying algorithms such as machine learning and d...
Uloženo v:
| Vydáno v: | IEEE transactions on reliability Ročník 71; číslo 2; s. 1000 - 1010 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9529, 1558-1721 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Industrial Internet of Things (IoT) is the most rapidly developing industry in the current IoT industry, and the intrusion detection system (IDS) remains one of the key technologies for industrial IoT security protection. Researchers have considered applying algorithms such as machine learning and deep learning to network IDSs to cope with complex and changing network environments and to automatically extract key features from high-dimensional feature data. However, in the real industrial IoT environment, data imbalance is the main factor that affects the performance of the deep-learning-based IDS. In this article, we study the network intrusion detection model based on data level. Three data-based research schemes are constructed step by step in this article, which are a data augmentation scheme based on the variational autoencoder (VAE), a data-balancing scheme based on the conditional VAE, and a data-balancing scheme based on random undersampling and conditional VAE. The three data-level-based schemes are combined with the deep-learning-based IDS. In this article, we build experiments based on the CSE-CIC-IDS2018 dataset to verify the effectiveness of three data processing schemes. After data enhancement through the third scheme, the Macro-F1-score of the convolutional-neural-network-based IDS model improved by 3.75% and the Macro-F1-score of the gated-recurrent-unit-based IDS model improved by 5.32%. |
|---|---|
| AbstractList | Industrial Internet of Things (IoT) is the most rapidly developing industry in the current IoT industry, and the intrusion detection system (IDS) remains one of the key technologies for industrial IoT security protection. Researchers have considered applying algorithms such as machine learning and deep learning to network IDSs to cope with complex and changing network environments and to automatically extract key features from high-dimensional feature data. However, in the real industrial IoT environment, data imbalance is the main factor that affects the performance of the deep-learning-based IDS. In this article, we study the network intrusion detection model based on data level. Three data-based research schemes are constructed step by step in this article, which are a data augmentation scheme based on the variational autoencoder (VAE), a data-balancing scheme based on the conditional VAE, and a data-balancing scheme based on random undersampling and conditional VAE. The three data-level-based schemes are combined with the deep-learning-based IDS. In this article, we build experiments based on the CSE-CIC-IDS2018 dataset to verify the effectiveness of three data processing schemes. After data enhancement through the third scheme, the Macro-F1-score of the convolutional-neural-network-based IDS model improved by 3.75% and the Macro-F1-score of the gated-recurrent-unit-based IDS model improved by 5.32%. |
| Author | Antypenko, Ruslan Sushko, Iryna Liu, Chang Zakharchenko, Oksana |
| Author_xml | – sequence: 1 givenname: Chang orcidid: 0000-0003-2485-1339 surname: Liu fullname: Liu, Chang email: liuchang@gdou.edu.cn organization: Institute of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, China – sequence: 2 givenname: Ruslan surname: Antypenko fullname: Antypenko, Ruslan email: r.antypenko@kpi.ua organization: Radio Engineering Faculty, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute,", Kyiv, Ukraine – sequence: 3 givenname: Iryna surname: Sushko fullname: Sushko, Iryna email: sushko@ros.kpi.ua organization: Radio Engineering Faculty, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute,", Kyiv, Ukraine – sequence: 4 givenname: Oksana surname: Zakharchenko fullname: Zakharchenko, Oksana email: novikos1975@gmail.com organization: Radio Engineering Faculty, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute,", Kyiv, Ukraine |
| BookMark | eNp9kD1PwzAQhi1UJNrCzMBiiTmtz4njeAxt-ZAqIZXAGpn4QlM1SbGdof-eVKkYGJju633udO-EjJq2QUJugc0AmJpnmxlnnM9CiKNEygsyBiGSACSHERkzBkmgBFdXZOLcri-jSCVjkr003nauahu6RI-FP2VvR-expmnp0dKl9pqm3VeNjdfDuNhijY4-aIeG9g2_RfqRrqhuDF30yTW5LPXe4c05Tsn74ypbPAfr16eXRboOCg7KB1FZRkYXRooQEzBKMRlpZAVTmmsdCvEpS85iCFlijGaxEEZEWgLKpAgZmHBK7oe9B9t-d-h8vms72_Qncx5LnvQsQK8Sg6qwrXMWy7yohk-81dU-B5afDMyzTX4yMD8b2HPzP9zBVrW2x3-Iu4GoEPFXrWQMSqjwBxiyeyI |
| CODEN | IERQAD |
| CitedBy_id | crossref_primary_10_1109_JIOT_2024_3380822 crossref_primary_10_1631_FITEE_2400467 crossref_primary_10_1016_j_nxmate_2025_100683 crossref_primary_10_1016_j_neunet_2024_107064 crossref_primary_10_32604_cmc_2023_046055 crossref_primary_10_1109_MWC_004_2400017 crossref_primary_10_1109_JSTSP_2022_3224597 crossref_primary_10_1145_3695879 crossref_primary_10_1016_j_jnca_2024_103925 crossref_primary_10_1016_j_jnca_2024_103926 crossref_primary_10_1371_journal_pone_0331065 crossref_primary_10_1109_ACCESS_2023_3324657 crossref_primary_10_1016_j_knosys_2024_112563 crossref_primary_10_3390_app15063362 crossref_primary_10_1016_j_neucom_2025_131063 crossref_primary_10_3390_electronics14173513 crossref_primary_10_1016_j_ijepes_2024_110190 crossref_primary_10_1016_j_jnca_2025_104256 crossref_primary_10_1109_TII_2024_3403267 crossref_primary_10_1115_1_4065212 crossref_primary_10_1007_s13042_025_02726_6 crossref_primary_10_1016_j_cose_2024_104005 crossref_primary_10_1109_ACCESS_2024_3426279 crossref_primary_10_1016_j_iot_2024_101397 crossref_primary_10_3390_electronics13214253 crossref_primary_10_1109_ACCESS_2025_3598777 crossref_primary_10_3390_bioengineering10121348 crossref_primary_10_1007_s12530_024_09644_y crossref_primary_10_1016_j_jksuci_2023_101796 crossref_primary_10_1186_s42400_025_00364_7 crossref_primary_10_1109_JSEN_2024_3503595 crossref_primary_10_3390_sym17040526 crossref_primary_10_1109_ACCESS_2025_3564985 crossref_primary_10_1109_TCE_2023_3331907 crossref_primary_10_1109_JSEN_2025_3526997 crossref_primary_10_1016_j_est_2025_117994 crossref_primary_10_1109_TR_2025_3528256 crossref_primary_10_1016_j_procs_2025_03_341 crossref_primary_10_1109_TR_2025_3529303 crossref_primary_10_1016_j_anucene_2025_111502 crossref_primary_10_1109_ACCESS_2025_3529894 crossref_primary_10_1109_JIOT_2023_3342638 crossref_primary_10_23919_PCMP_2024_000213 crossref_primary_10_3390_jmse11010221 crossref_primary_10_1016_j_comnet_2025_111116 crossref_primary_10_1109_TIM_2024_3427765 crossref_primary_10_1016_j_knosys_2025_114285 crossref_primary_10_3390_app15031552 crossref_primary_10_1016_j_yofte_2025_104137 crossref_primary_10_3390_electronics14112103 crossref_primary_10_3390_electronics12183911 crossref_primary_10_1007_s11227_025_07842_2 crossref_primary_10_1007_s40747_024_01370_x crossref_primary_10_1109_JIOT_2024_3360231 crossref_primary_10_1016_j_engappai_2025_111866 crossref_primary_10_1109_TVT_2024_3402366 |
| Cites_doi | 10.1109/TII.2020.3022432 10.23940/ijpe.21.06.p9.559568 10.1109/DCOSS.2011.5982146 10.1109/ITNEC52019.2021.9587207 10.1109/JIOT.2018.2873125 10.1109/JIOT.2016.2579198 10.1109/ICSPCC52875.2021.9564961 10.1016/j.cja.2021.08.016 10.1109/LCN.2012.6423615 10.1002/sec.1748 10.3390/s21020626 10.1109/ACCESS.2020.2973730 10.1016/j.measurement.2019.107450 10.1109/TR.2021.3062045 10.1109/ICC40277.2020.9149384 10.1109/MilCIS.2015.7348942 10.1007/978-3-319-46568-5_53 10.1155/2018/5680264 10.3390/sym13010004 10.32604/cmc.2020.010102 10.1016/j.ins.2019.10.069 10.1109/TIFS.2020.2991876 10.1145/3018896.3018901 10.1016/j.comnet.2020.107315 10.5220/0006639801080116 10.1109/TSUSC.2018.2793284 10.23940/ijpe.21.09.p1.741755 10.1007/s00779-019-01332-y |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TR.2022.3164877 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-1721 |
| EndPage | 1010 |
| ExternalDocumentID | 10_1109_TR_2022_3164877 9761959 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Enhancing School with Innovation of Guangdong Ocean University grantid: 230420023 – fundername: overseas famous teachers grantid: 2020A1414010380 – fundername: Guangdong Province Science and Technology Special Funds grantid: 2021A05237 – fundername: Scientific Research start-up funds of Guangdong Ocean University grantid: R20065 – fundername: Guangdong Science and Technology Department; Guangdong Provincial Science and Technology Department funderid: 10.13039/501100007162 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ OCL P2P RIA RIE RNS TN5 VH1 VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c219t-4ff4dacd753e81d99074ae0c09a2aa355b7f2061308dda0655d54a71e78c301d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 77 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788963000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9529 |
| IngestDate | Tue Sep 23 17:40:59 EDT 2025 Sat Nov 29 01:54:36 EST 2025 Tue Nov 18 22:31:04 EST 2025 Wed Aug 27 02:24:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c219t-4ff4dacd753e81d99074ae0c09a2aa355b7f2061308dda0655d54a71e78c301d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2485-1339 |
| PQID | 2672806111 |
| PQPubID | 85456 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TR_2022_3164877 crossref_primary_10_1109_TR_2022_3164877 ieee_primary_9761959 proquest_journals_2672806111 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-June 2022-6-00 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on reliability |
| PublicationTitleAbbrev | TR |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Sohn (ref30) 2015; 28 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ZHANG (ref4) 2020; 41 ref7 ref9 Kingma (ref29) 2013 ref3 ref6 ref5 |
| References_xml | – ident: ref22 doi: 10.1109/TII.2020.3022432 – ident: ref1 doi: 10.23940/ijpe.21.06.p9.559568 – ident: ref11 doi: 10.1109/DCOSS.2011.5982146 – ident: ref23 doi: 10.1109/ITNEC52019.2021.9587207 – ident: ref21 doi: 10.1109/JIOT.2018.2873125 – ident: ref9 doi: 10.1109/JIOT.2016.2579198 – ident: ref28 doi: 10.1109/ICSPCC52875.2021.9564961 – ident: ref5 doi: 10.1016/j.cja.2021.08.016 – ident: ref10 doi: 10.1109/LCN.2012.6423615 – ident: ref8 doi: 10.1002/sec.1748 – ident: ref18 doi: 10.3390/s21020626 – ident: ref25 doi: 10.1109/ACCESS.2020.2973730 – ident: ref14 doi: 10.1016/j.measurement.2019.107450 – year: 2013 ident: ref29 article-title: Auto-encoding variational Bayes – ident: ref3 doi: 10.1109/TR.2021.3062045 – ident: ref17 doi: 10.1109/ICC40277.2020.9149384 – volume: 28 start-page: 3483 year: 2015 ident: ref30 article-title: Learning structured output representation using deep conditional generative models publication-title: Adv. Neural Inf. Process. Syst. – ident: ref6 doi: 10.1109/MilCIS.2015.7348942 – ident: ref12 doi: 10.1007/978-3-319-46568-5_53 – ident: ref13 doi: 10.1155/2018/5680264 – ident: ref20 doi: 10.3390/sym13010004 – ident: ref15 doi: 10.32604/cmc.2020.010102 – volume: 41 start-page: 12 issue: 11 year: 2020 ident: ref4 article-title: Electromagnetic signal modulation recognition technology based on lightweight deep neural network publication-title: J. Commun. – ident: ref19 doi: 10.1016/j.ins.2019.10.069 – ident: ref24 doi: 10.1109/TIFS.2020.2991876 – ident: ref7 doi: 10.1145/3018896.3018901 – ident: ref26 doi: 10.1016/j.comnet.2020.107315 – ident: ref31 doi: 10.5220/0006639801080116 – ident: ref16 doi: 10.1109/TSUSC.2018.2793284 – ident: ref2 doi: 10.23940/ijpe.21.09.p1.741755 – ident: ref27 doi: 10.1007/s00779-019-01332-y |
| SSID | ssj0014498 |
| Score | 2.578129 |
| Snippet | Industrial Internet of Things (IoT) is the most rapidly developing industry in the current IoT industry, and the intrusion detection system (IDS) remains one... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1000 |
| SubjectTerms | Algorithms Balancing Conditional variational autoencoder (CVAE) Convolutional neural networks Data augmentation data imbalance Data models Data processing Deep learning Feature extraction Industrial applications Industrial development Industrial Internet of Things Internet of Things intrusion detection system (IDS) Intrusion detection systems Machine learning Machine learning algorithms Neural networks Training variational autoencoder (VAE) |
| Title | Intrusion Detection System After Data Augmentation Schemes Based on the VAE and CVAE |
| URI | https://ieeexplore.ieee.org/document/9761959 https://www.proquest.com/docview/2672806111 |
| Volume | 71 |
| WOSCitedRecordID | wos000788963000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-1721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014498 issn: 0018-9529 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLa2iQMceA3EYKAcOHCgW9ulTXMcewgkNKGpoN2qNEkREusQ2_j9OG1WgYADt6hNqsqu7e9rYhvgUqIxp6ZNqttLQ4cKL0Sbk67jh8iesyDMojJR-J5NJtFsxh9qcF3lwmiti8NnumOGxV6-Wsi1-VXW5YZzB7wOdcZYmatV7RhQyq3XRQMOfG7L-Hgu78ZT5IG-j_Q0RHjOvkWgoqXKDz9cBJfx3v9eax92LYgk_VLrB1DT-SHsfCkt2IT4LjfpFCh1MtSr4rxVTsry5KRv-oKToVgJ0l8_z232Ed5GBc71ktxgZFMELyA4JE_9ERG5IgMcHMHjeBQPbh3bQcGR6IlWDs0yqoRUyEk0AlNumLDQrnS58IVAqJGyzDcR3Y2UEohGAhVQwTzNIomWr3rH0MgXuT4BQj0lUxooX2QhRdgUpZx6EWdpRLlGGtSCzkaqibTlxU2Xi9ekoBkuT-JpYtSQWDW04Kpa8FZW1vh7atNIvZpmBd6C9kZtibW8ZeKHpuFWiC789PdVZ7Btnl0e92pDA5Whz2FLfqxelu8XxUf1CbQcx2w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQAIOvAZiMCAHDhzo1ob0keNgTJsYE5oK2q1KkxQhsYLYxu_HacMEAg7cojZRK7u2v6-JbYBTicacmjap7kUaOEx4AdqcdB0aIHvO_CCLykThQTgcRuMxv6vA-SIXRmtdHD7TTTMs9vLVi5ybX2Utbji3z5dg2WeMemW21mLPgDFu_S6asE-5LeTjubwVj5AJUooENUCAHn6LQUVTlR-euAgv3c3_vdgWbFgYSdql3rehovMdWP9SXLAGcT83CRUod9LRs-LEVU7KAuWkbTqDk46YCdKeP05s_hHeRhVO9JRcYmxTBC8gPCQP7WsickWucLAL993r-Krn2B4KjkRfNHNYljElpEJWohGacsOFhXalywUVAsFGGmbUxHQ3UkogHvGVz0To6TCSaPvqYg-q-Uuu94EwT8mU-YqKLGAInKKUMy_iYRoxrpEI1aH5KdVE2gLjps_Fc1IQDZcn8SgxakisGupwtljwWtbW-HtqzUh9Mc0KvA6NT7Ul1vamCQ1My60AnfjB76tOYLUX3w6SQX94cwhr5jnl4a8GVFEx-ghW5Pvsafp2XHxgH0CiyrM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+Detection+System+After+Data+Augmentation+Schemes+Based+on+the+VAE+and+CVAE&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Liu%2C+Chang&rft.au=Antypenko%2C+Ruslan&rft.au=Sushko%2C+Iryna&rft.au=Zakharchenko%2C+Oksana&rft.date=2022-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9529&rft.eissn=1558-1721&rft.volume=71&rft.issue=2&rft.spage=1000&rft_id=info:doi/10.1109%2FTR.2022.3164877&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon |