Enhancing Intrusion Detection Systems Using Metaheuristic Algorithms

In the current network security framework, Intrusion Detection Systems (IDSs) happen to be among the major players in ensuring that the network activity is being monitored round the clock for any intrusions which may occur. The rising degree of cyber threats’ intricacy enforces the constant developm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DIYALA JOURNAL OF ENGINEERING SCIENCES Jg. 17; H. 3; S. 15 - 31
Hauptverfasser: Mohammed Fadhil, Heba, Dawood, Zinah Osamah, Al Mhdawi, Ammar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: University of Diyala 01.09.2024
Schlagworte:
ISSN:1999-8716, 2616-6909
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the current network security framework, Intrusion Detection Systems (IDSs) happen to be among the major players in ensuring that the network activity is being monitored round the clock for any intrusions which may occur. The rising degree of cyber threats’ intricacy enforces the constant development of IDS methodologies to maintain effectiveness in detecting and reversing the emergence of any extra risks. Therefore, to settle the matter featured by, this research studies try to incorporate the most powerful metaheuristic algorithms, Lion Optimization Algorithm (LOA) and Grey Wolf Optimizer (GWO) in particular, to develop better detection accuracy and efficiency. The core obstacle recognized in this article is the fact that many systems of IDS send out false alarms and their mechanisms of detection of the true anomalies need to be improved immensely. In a nutshell, the change would unveil a fresh way of using LOA and GWO using them to promote the enhancement of internet defences systems in real-time. These schemes can discover previously unknown weaknesses or stealthy attacks. The core of this undertaking would consist in the conception and implementing of a Hybrid Network Intrusion Detection System, which will be created by blending the Lion Optimization Feature Selection (LOFS) and GWO smelters, denoted as LOFSGWO. Critically, the main purpose is to incorporate the GWO as a tool in the operations to cut down the dangerous parameters favourable towards an intrusion mechanism in the framework of a Hybrid CNN-LSTM Deep Learning system. Model tests reveal over 99.26% accuracy of low negative samples into out of a box that are served as testing as well as NSL-KDD dataset, which are similar to the simulation of WUSTL-EOM 2020 system. The obtained outcomes verify the relevance and efficiency of the suggested strategy, which may be used in the resolution of the issues faced in a network security today.
AbstractList In the current network security framework, Intrusion Detection Systems (IDSs) happen to be among the major players in ensuring that the network activity is being monitored round the clock for any intrusions which may occur. The rising degree of cyber threats’ intricacy enforces the constant development of IDS methodologies to maintain effectiveness in detecting and reversing the emergence of any extra risks. Therefore, to settle the matter featured by, this research studies try to incorporate the most powerful metaheuristic algorithms, Lion Optimization Algorithm (LOA) and Grey Wolf Optimizer (GWO) in particular, to develop better detection accuracy and efficiency. The core obstacle recognized in this article is the fact that many systems of IDS send out false alarms and their mechanisms of detection of the true anomalies need to be improved immensely. In a nutshell, the change would unveil a fresh way of using LOA and GWO using them to promote the enhancement of internet defences systems in real-time. These schemes can discover previously unknown weaknesses or stealthy attacks. The core of this undertaking would consist in the conception and implementing of a Hybrid Network Intrusion Detection System, which will be created by blending the Lion Optimization Feature Selection (LOFS) and GWO smelters, denoted as LOFSGWO. Critically, the main purpose is to incorporate the GWO as a tool in the operations to cut down the dangerous parameters favourable towards an intrusion mechanism in the framework of a Hybrid CNN-LSTM Deep Learning system. Model tests reveal over 99.26% accuracy of low negative samples into out of a box that are served as testing as well as NSL-KDD dataset, which are similar to the simulation of WUSTL-EOM 2020 system. The obtained outcomes verify the relevance and efficiency of the suggested strategy, which may be used in the resolution of the issues faced in a network security today.
Author Mohammed Fadhil, Heba
Dawood, Zinah Osamah
Al Mhdawi, Ammar
Author_xml – sequence: 1
  givenname: Heba
  surname: Mohammed Fadhil
  fullname: Mohammed Fadhil, Heba
– sequence: 2
  givenname: Zinah Osamah
  surname: Dawood
  fullname: Dawood, Zinah Osamah
– sequence: 3
  givenname: Ammar
  surname: Al Mhdawi
  fullname: Al Mhdawi, Ammar
BookMark eNo9kMtuwjAQRa2KSqWUfZf5gdDx2LHjJQLaIlF10bK2bGcCQZBUdljw9-VRdXVHV6Ojq_PIBm3XEmPPHCYoUeiXakdpgoBywrUAvGNDVFzlyoAZsCE3xuSl5uqBjVPaAQAajrwUQzZftFvXhqbdZMu2j8fUdG02p55Cf7m-TqmnQ8rW6fLxQb3b0jE2qW9CNt1vutj020N6Yve12yca_-WIrV8X37P3fPX5tpxNV3lAbjB30mjUJDAUBXLPCyAhFQ9QCC11AC2VV96b2lNZCYmhroU358I7qTSCGLHljVt1bmd_YnNw8WQ719hr0cWNdfE8bU_WVE5xLUWhQUhRkgdfesKiqhQKTu7MghsrxC6lSPU_j4O9SrUXqfYi1V6lil_ZdGv8
Cites_doi 10.1016/j.comnet.2023.109662
10.3390/electronics11182885
10.1145/382912.382923
10.1016/j.jcde.2015.06.003
10.5121/ijnsa.2021.13102
10.1186/s40537-024-00887-9
10.1109/INFOCOMWKSHPS57453.2023.10225791
10.1201/9781003406105-14
10.12720/jait.13.1.36-44
10.1016/j.compeleceng.2023.108626
10.1109/ACCESS.2021.3128837
10.1016/j.jisa.2022.103405
10.3390/math11081887
10.1016/j.seta.2022.102311
10.3390/jcp1010011
10.3390/sym13101814
10.1007/s00500-023-08678-9
10.1016/j.iot.2023.100887
10.1007/s11227-022-04568-3
10.54216/JCIM.090106
10.1109/OTCON56053.2023.10113978
10.1109/ACCESS.2020.3000421
10.32604/csse.2023.041446
10.1007/s11042-023-14795-2
10.1016/j.inffus.2022.09.026
10.1016/j.knosys.2021.107894
10.1016/j.advengsoft.2013.12.007
10.1007/s40860-021-00169-8
10.1109/CISDA.2009.5356528
10.1007/s10207-022-00616-4
10.3991/ijim.v16i14.30197
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.24237/djes.2024.17302
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2616-6909
EndPage 31
ExternalDocumentID oai_doaj_org_article_9da617435703438eb0b8be25dd6231ea
10_24237_djes_2024_17302
GroupedDBID .K5
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c2192-a49727e32c5521b150e3461c053747c0746b6bb9fbe8d342cff3b9bb9ba467203
IEDL.DBID DOA
ISSN 1999-8716
IngestDate Fri Oct 03 12:42:21 EDT 2025
Thu Oct 16 03:47:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2192-a49727e32c5521b150e3461c053747c0746b6bb9fbe8d342cff3b9bb9ba467203
OpenAccessLink https://doaj.org/article/9da617435703438eb0b8be25dd6231ea
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_9da617435703438eb0b8be25dd6231ea
crossref_primary_10_24237_djes_2024_17302
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle DIYALA JOURNAL OF ENGINEERING SCIENCES
PublicationYear 2024
Publisher University of Diyala
Publisher_xml – name: University of Diyala
References 19489
19500
19488
19502
19501
19485
19484
19487
19486
19483
19508
19507
19509
19504
19503
19506
19505
19511
19499
19510
19513
19512
19496
19495
19498
19497
19492
19491
19494
19493
19490
19515
19514
References_xml – ident: 19497
  doi: 10.1016/j.comnet.2023.109662
– ident: 19512
  doi: 10.3390/electronics11182885
– ident: 19509
  doi: 10.1145/382912.382923
– ident: 19510
  doi: 10.1016/j.jcde.2015.06.003
– ident: 19493
  doi: 10.5121/ijnsa.2021.13102
– ident: 19504
  doi: 10.1186/s40537-024-00887-9
– ident: 19499
  doi: 10.1109/INFOCOMWKSHPS57453.2023.10225791
– ident: 19503
  doi: 10.1201/9781003406105-14
– ident: 19484
  doi: 10.12720/jait.13.1.36-44
– ident: 19508
– ident: 19494
  doi: 10.1016/j.compeleceng.2023.108626
– ident: 19501
  doi: 10.1109/ACCESS.2021.3128837
– ident: 19488
  doi: 10.1016/j.jisa.2022.103405
– ident: 19485
  doi: 10.3390/math11081887
– ident: 19492
  doi: 10.1016/j.seta.2022.102311
– ident: 19487
  doi: 10.3390/jcp1010011
– ident: 19514
  doi: 10.3390/sym13101814
– ident: 19515
  doi: 10.1007/s00500-023-08678-9
– ident: 19498
  doi: 10.1016/j.iot.2023.100887
– ident: 19500
  doi: 10.1007/s11227-022-04568-3
– ident: 19513
  doi: 10.54216/JCIM.090106
– ident: 19502
  doi: 10.1109/OTCON56053.2023.10113978
– ident: 19505
  doi: 10.1109/ACCESS.2020.3000421
– ident: 19491
  doi: 10.32604/csse.2023.041446
– ident: 19495
  doi: 10.1007/s11042-023-14795-2
– ident: 19507
– ident: 19483
  doi: 10.1016/j.inffus.2022.09.026
– ident: 19486
  doi: 10.1016/j.knosys.2021.107894
– ident: 19511
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 19496
  doi: 10.1007/s40860-021-00169-8
– ident: 19506
  doi: 10.1109/CISDA.2009.5356528
– ident: 19489
  doi: 10.1007/s10207-022-00616-4
– ident: 19490
  doi: 10.3991/ijim.v16i14.30197
SSID ssj0002912183
Score 2.2939854
Snippet In the current network security framework, Intrusion Detection Systems (IDSs) happen to be among the major players in ensuring that the network activity is...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 15
SubjectTerms Intrusion Detection System; metaheuristic algorithms; Lion Optimization Algorithm ; Grey Wolf Optimization; Hyperparameter; Feature Selection; Deep Learning
Title Enhancing Intrusion Detection Systems Using Metaheuristic Algorithms
URI https://doaj.org/article/9da617435703438eb0b8be25dd6231ea
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals - NZ
  customDbUrl:
  eissn: 2616-6909
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002912183
  issn: 1999-8716
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcCCQIAoX_LAwhBafzSJx0JbgQQVA0jdoti5tCBwK1r4_dzZAZWJhdWKLOfZununu3vH2LmCXFea2j4cuESDFomVQiWyV9U6S2tk6KFR-C4bj_PJxDysjfqimrAoDxyB65iqTIk1k1KUVjnYrs0t4FYVOm4BgRp1M7MWTJENlkaQ7w8pZWMSigpijpLoQ9apXoCkuqW-FPjC5S-ftCbdH3zMaIdtN-SQ9-OhdtkG-D02GPoZiWL4Kb_11CKBSPIBrEINleeN5DgPuX9-D6tyBh9Rfpn3X6dzDP5nb8t99jQaPl7fJM3sg8ShDZFJqQ0yC1DS9dDBWqRtoHQqHMmv6MzRlBCbWmtqC3mltHR1razBBVui6ZNddcBafu7hkHHQpSEVegcpAm-lzdGlWwGiriFTJbTZxfffF4socVFgaBCQKgipgpAqAlJtdkXw_HxH4tRhAa-saK6s-OvKjv5jk2O2RceK5V4nrIX4wynbdJ-r5-X7WXgNX586tvY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Intrusion+Detection+Systems+Using+Metaheuristic+Algorithms&rft.jtitle=DIYALA+JOURNAL+OF+ENGINEERING+SCIENCES&rft.au=Mohammed+Fadhil%2C+Heba&rft.au=Dawood%2C+Zinah+Osamah&rft.au=Al+Mhdawi%2C+Ammar&rft.date=2024-09-01&rft.issn=1999-8716&rft.eissn=2616-6909&rft.spage=15&rft.epage=31&rft_id=info:doi/10.24237%2Fdjes.2024.17302&rft.externalDBID=n%2Fa&rft.externalDocID=10_24237_djes_2024_17302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-8716&client=summon