A Prediction and Weak Coevolution-Based Dynamic Constrained Multiobjective Optimization

Dynamic multiobjective evolutionary algorithms (DMOEAs) have gained great popularity in dealing with the dynamic multiobjective optimization problems (DMOPs). However, the existing studies have difficulties in tackling DMOPs subject to (dynamic) constraints. In this article, we propose a prediction...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 29; číslo 4; s. 1328 - 1342
Hlavní autoři: Gong, Dunwei, Rong, Miao, Hu, Na, Wang, Yan, Pedrycz, Witold, Yang, Shengxiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.08.2025
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Dynamic multiobjective evolutionary algorithms (DMOEAs) have gained great popularity in dealing with the dynamic multiobjective optimization problems (DMOPs). However, the existing studies have difficulties in tackling DMOPs subject to (dynamic) constraints. In this article, we propose a prediction and weak coevolutionary multiobjective optimization algorithm (PWDCMO) to handle the dynamic constrained multiobjective optimization problems (DCMOPs), where a prediction strategy is employed to forecast potential optimal regions under the new environment, with a weak coevolutionary constrained multiobjective optimization (CCMO) as the optimizer aiming at balancing exploration and convergence. The proposed method is compared with the four popular dynamic constrained multiobjective evolutionary algorithms (DCMOEAs) on six test instances from two various test suites with their convergence and the overall performance being discussed. Furthermore, the performance of the proposed prediction strategy is also investigated to observe its impact on the final results. Additionally, the PWDCMO is employed in the optimization of an integrated coal mine energy system (ICMES) to validate the proficiency in addressing real world problems. Experimental results demonstrate the superiority of PWDCMO.
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2024.3418470