An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times

The distributed permutation flowshop scheduling problem (DPFSP) has attracted much attention in recent years. In this paper, we extend the DPFSP by considering the sequence-dependent setup time (SDST), and present a mathematical model and an iterated greedy algorithm with a restart scheme (IGR). In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Swarm and evolutionary computation Jg. 59; S. 100742
Hauptverfasser: Huang, Jiang-Ping, Pan, Quan-Ke, Gao, Liang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2020
Schlagworte:
ISSN:2210-6502
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The distributed permutation flowshop scheduling problem (DPFSP) has attracted much attention in recent years. In this paper, we extend the DPFSP by considering the sequence-dependent setup time (SDST), and present a mathematical model and an iterated greedy algorithm with a restart scheme (IGR). In the IGR, we discard the simulated annealing-like acceptance criterion commonly used in traditional iterated greedy algorithms. A restart scheme with six different operators is proposed to ensure the diversity of the solutions and help the algorithm to escape from local optimizations. Furthermore, to achieve a balance between the exploitation and exploration, we introduce an algorithmic control parameter in the IG stage. Additionally, to further improve the performance of the algorithm, we propose two local search methods based on a job block which is built in the evolution process. A detailed design experiment is carried out to calibrate the parameters for the presented IGR algorithm. The IGR is assessed through comparing with the state-of-the-art algorithms in the literature. The experimental results show that the proposed IGR algorithm is the best-performing one among all the algorithms in comparison.
AbstractList The distributed permutation flowshop scheduling problem (DPFSP) has attracted much attention in recent years. In this paper, we extend the DPFSP by considering the sequence-dependent setup time (SDST), and present a mathematical model and an iterated greedy algorithm with a restart scheme (IGR). In the IGR, we discard the simulated annealing-like acceptance criterion commonly used in traditional iterated greedy algorithms. A restart scheme with six different operators is proposed to ensure the diversity of the solutions and help the algorithm to escape from local optimizations. Furthermore, to achieve a balance between the exploitation and exploration, we introduce an algorithmic control parameter in the IG stage. Additionally, to further improve the performance of the algorithm, we propose two local search methods based on a job block which is built in the evolution process. A detailed design experiment is carried out to calibrate the parameters for the presented IGR algorithm. The IGR is assessed through comparing with the state-of-the-art algorithms in the literature. The experimental results show that the proposed IGR algorithm is the best-performing one among all the algorithms in comparison.
ArticleNumber 100742
Author Gao, Liang
Pan, Quan-Ke
Huang, Jiang-Ping
Author_xml – sequence: 1
  givenname: Jiang-Ping
  surname: Huang
  fullname: Huang, Jiang-Ping
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200072, PR China
– sequence: 2
  givenname: Quan-Ke
  surname: Pan
  fullname: Pan, Quan-Ke
  email: panquanke@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200072, PR China
– sequence: 3
  givenname: Liang
  surname: Gao
  fullname: Gao, Liang
  organization: State Key Lab of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology, Wuhan, 430074, PR China
BookMark eNqFkLtOwzAUhj0UiQJ9Aha_QIrtXJwMDFXFTarEArPlxMeNqyQOttOqMy9OQpgY4CxH-nW-I_3fFVp0tgOEbilZU0Kzu8Pan-Bo14ywKSE8YQu0ZIySKEsJu0Qr7w9knIywNC2W6HPTYdAaqmCOgE0AJwMovHcA6oxbCLVVWFuHQw1YGR-cKYfpogfXDkEGYzusG3vyte2xr2pQQ2O6Pe6dLRto8cmEGnv4GKCrIFLQQ6egC2MUhh4H04K_QRdaNh5WP_savT8-vG2fo93r08t2s4sqRvMQ6RJUnuQ6VYmSnGeEljLRqYQ8TQrOJEs0rxhnZRInUmuuSUo4p4rGPM4LmcXXKJ7_Vs5670CL3plWurOgREz6xEF86xOTPjHrG6niF1WZuXdw0jT_sPczC2OtowEnfGUmEcq4UblQ1vzJfwHL6JTB
CitedBy_id crossref_primary_10_3390_math11112453
crossref_primary_10_1016_j_cie_2021_107863
crossref_primary_10_1016_j_ejor_2023_02_001
crossref_primary_10_1016_j_asoc_2025_113475
crossref_primary_10_1016_j_eswa_2022_117256
crossref_primary_10_1016_j_eswa_2020_114495
crossref_primary_10_1038_s41598_023_47729_x
crossref_primary_10_1016_j_engappai_2025_111197
crossref_primary_10_1007_s40747_022_00830_6
crossref_primary_10_3390_su15086884
crossref_primary_10_1016_j_oceaneng_2025_122484
crossref_primary_10_1016_j_asoc_2021_107830
crossref_primary_10_1016_j_eswa_2023_121790
crossref_primary_10_1016_j_swevo_2021_100861
crossref_primary_10_1016_j_cie_2022_108366
crossref_primary_10_1016_j_cie_2024_110647
crossref_primary_10_1016_j_cie_2024_110445
crossref_primary_10_1016_j_ejor_2022_02_019
crossref_primary_10_1016_j_knosys_2022_108328
crossref_primary_10_1080_13675567_2025_2480635
crossref_primary_10_1016_j_cie_2021_107337
crossref_primary_10_1016_j_cor_2022_105733
crossref_primary_10_1080_00207543_2023_2217280
crossref_primary_10_1016_j_eswa_2023_120909
crossref_primary_10_1109_TII_2022_3218645
crossref_primary_10_1016_j_ejor_2023_05_010
crossref_primary_10_1016_j_swevo_2021_100874
crossref_primary_10_1016_j_cie_2023_109082
crossref_primary_10_1016_j_knosys_2021_106959
crossref_primary_10_1016_j_cor_2021_105233
crossref_primary_10_1109_TASE_2022_3212786
crossref_primary_10_1016_j_eswa_2023_120830
crossref_primary_10_1007_s10479_022_04537_2
crossref_primary_10_1038_s41598_025_06512_w
crossref_primary_10_1007_s11081_024_09911_6
crossref_primary_10_1016_j_swevo_2023_101320
crossref_primary_10_1109_TCYB_2022_3164165
crossref_primary_10_1016_j_swevo_2022_101143
crossref_primary_10_1080_00207543_2020_1837982
crossref_primary_10_1109_TSMC_2023_3256484
crossref_primary_10_1016_j_simpat_2021_102455
crossref_primary_10_1016_j_swevo_2021_100992
crossref_primary_10_1016_j_asoc_2021_107247
crossref_primary_10_1016_j_swevo_2025_102015
crossref_primary_10_1016_j_asoc_2021_107526
crossref_primary_10_1016_j_engappai_2023_106228
crossref_primary_10_1016_j_eswa_2024_124200
crossref_primary_10_1016_j_eswa_2024_123278
crossref_primary_10_1109_TASE_2021_3062994
crossref_primary_10_1007_s10586_024_05023_z
crossref_primary_10_1109_TASE_2022_3151648
crossref_primary_10_1007_s10696_024_09585_3
crossref_primary_10_1016_j_swevo_2020_100804
crossref_primary_10_3233_JIFS_224199
crossref_primary_10_1016_j_knosys_2022_109962
crossref_primary_10_1016_j_engappai_2022_105418
crossref_primary_10_1016_j_knosys_2021_108036
crossref_primary_10_3390_s23052808
crossref_primary_10_1007_s00521_022_08012_8
crossref_primary_10_1007_s10845_022_01996_z
crossref_primary_10_1016_j_matcom_2025_02_026
crossref_primary_10_1088_1742_6596_2258_1_012029
crossref_primary_10_1016_j_asoc_2024_112436
crossref_primary_10_1016_j_swevo_2024_101777
crossref_primary_10_1016_j_cor_2025_107044
crossref_primary_10_3390_math11030581
crossref_primary_10_1016_j_eswa_2024_125374
crossref_primary_10_1007_s40747_023_00984_x
crossref_primary_10_1016_j_eswa_2025_129012
crossref_primary_10_1016_j_swevo_2025_102028
crossref_primary_10_1016_j_swevo_2022_101179
crossref_primary_10_1109_TETCI_2023_3271331
crossref_primary_10_1016_j_cie_2021_107791
crossref_primary_10_1155_2020_8833645
crossref_primary_10_1016_j_jmsy_2022_11_006
crossref_primary_10_1049_cim2_12099
crossref_primary_10_3390_math13050877
crossref_primary_10_1016_j_engappai_2022_105443
crossref_primary_10_1016_j_asoc_2020_106945
crossref_primary_10_1016_j_cie_2024_110465
crossref_primary_10_1016_j_asoc_2020_106629
crossref_primary_10_1016_j_orp_2025_100340
crossref_primary_10_1177_00202940241245241
crossref_primary_10_1016_j_cor_2022_106009
crossref_primary_10_1016_j_cor_2021_105616
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_1080_00207543_2022_2031331
crossref_primary_10_1016_j_asoc_2023_110029
crossref_primary_10_1016_j_cor_2023_106224
crossref_primary_10_1016_j_swevo_2021_100858
crossref_primary_10_1109_TEVC_2021_3115795
crossref_primary_10_1016_j_swevo_2022_101200
crossref_primary_10_3390_sym15071409
crossref_primary_10_1016_j_asoc_2022_109502
crossref_primary_10_1016_j_cie_2020_107021
crossref_primary_10_1016_j_eswa_2023_122197
Cites_doi 10.1016/j.ejor.2012.12.031
10.1016/S0305-0548(97)00079-8
10.1080/00207543.2014.948578
10.1016/0377-2217(90)90090-X
10.1016/j.jclepro.2018.11.021
10.4028/www.scientific.net/AMR.339.332
10.1016/j.asoc.2016.11.031
10.1016/j.ejor.2017.06.027
10.1002/nav.3800010110
10.1016/j.engappai.2018.09.005
10.1109/TASE.2012.2192729
10.1016/j.ejor.2004.01.022
10.1109/JAS.2016.7508797
10.1080/0951192X.2016.1187293
10.1016/j.ins.2018.04.038
10.1016/j.cie.2017.07.020
10.1016/S0167-5060(08)70356-X
10.1023/A:1027372722187
10.1109/TPDS.2015.2398435
10.1016/j.cie.2018.03.014
10.1109/ACCESS.2017.2769100
10.1016/j.ins.2014.03.127
10.1007/s00170-010-3037-0
10.1016/0305-0483(83)90088-9
10.1016/j.eswa.2017.09.028
10.1109/JAS.2019.1911540
10.1016/j.compenvurbsys.2013.01.006
10.1016/j.eswa.2019.01.062
10.1007/s00170-012-4571-8
10.1016/j.ejor.2005.12.009
10.1109/TCYB.2017.2780274
10.1016/j.cor.2009.06.019
10.1007/978-3-642-54924-3_31
10.1016/j.asoc.2012.02.013
10.1016/j.asoc.2019.105492
10.1109/TPDS.2018.2836452
10.1016/j.jmsy.2013.07.003
10.1016/j.cie.2019.06.057
10.1016/j.omega.2018.03.004
10.1016/j.cor.2019.104812
10.1080/00207543.2013.790571
10.1016/j.ins.2014.02.122
10.1080/00207543.2019.1581955
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2020.100742
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2020_100742
S2210650220303953
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c218t-fbed848f5d4da77601ba4f5ae854972a24f7c272b434aff7f050771d137389a63
ISSN 2210-6502
IngestDate Wed Nov 05 20:47:54 EST 2025
Tue Nov 18 22:25:55 EST 2025
Fri Feb 23 02:47:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Iterated greedy algorithm
Scheduling
Flowshop
Meta-heuristics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c218t-fbed848f5d4da77601ba4f5ae854972a24f7c272b434aff7f050771d137389a63
ParticipantIDs crossref_primary_10_1016_j_swevo_2020_100742
crossref_citationtrail_10_1016_j_swevo_2020_100742
elsevier_sciencedirect_doi_10_1016_j_swevo_2020_100742
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gao, Cao, Zhang, Chen, Han, Pan (bib50) 2019; 6
Marichelvam, Geetha, Tosun (bib53) 2020; 114
Lin, Ying, Huang (bib6) 2013; 51
Porta, Parapar, Doallo, Barbosa, Santé, Crecente, Díaz (bib40) 2013; 39
Graham, Lawler, Lenstra, Kan (bib3) 1979; 5
Fernandez-Viagas, Perez-Gonzalez, Framinan (bib32) 2018; 118
Johnson (bib49) 1954; 1
Vanchipura, Sridharan, Babu (bib14) 2014; 33
Liu, Li, Xu, Li (bib34) 2016; 27
Liu, Li, Li (bib35) 2018; 29
Naderi, Ruiz (bib1) 2010; 37
Cao, Lin, Zhou (bib51) 2019
Zhang, Xing, Cao (bib52) 2018; 76
Zhao, Liu, Zhang, Ma, Zhang (bib39) 2018; 91
Li, Zhang (bib23) 2012; 9
Li, Chen (bib30) 2015
Fernandez-Viagas, Framinan (bib5) 2015; 53
Ruiz, Stützle (bib38) 2007; 177
Ríos-Mercado, Bard (bib9) 1998; 25
Sioud, Gagné (bib15) 2018; 264
Li, Yang, Ruiz, Chen, Sui (bib47) 2018; 53
Zhao, Liu, Zhou, Guo, Qi (bib19) 2020; 17
Gao, Chen (bib31) 2011; 4
Pan, Gao, Wang, Liang, Li (bib7) 2019; 124
Ruiz, Maroto, Alcaraz (bib17) 2005; 165
Ruiz, Pan, Naderi (bib4) 2019; 83
Yuan, Bi, C Zhou, Liu, Ammari (bib36) 2019; 99
Vanchipura, Sridharan (bib13) 2013; 67
Wang, Li (bib22) 2017; 5
Meng, Zhang, Shao, Ren (bib37) 2019; 210
Karabulut, Tasgetiren (bib48) 2014; 279
Ciavotta, Minella, Ruiz (bib26) 2013; 227
Conner (bib2) 2009; 93–99
Nawaz, Enscore, Ham (bib12) 1983; 11
Pan, Gao, Li, Framinan (bib16) 2019; 81
Wang, Tan (bib44) 2019; 49
Pan, Zou, Duan (bib43) 2018
Guo, Zhou, Liu, Qi (bib27) 2019
Bargaoui, Driss, Ghédira (bib28) 2017; 111
Taillard (bib42) 1990; 47
Bouamama, Blum, Boukerram (bib41) 2012; 12
Wang, Wang, Zheng (bib18) 2016; 3
Fernandez-Viagas, Perez-Gonzalez, Framinan (bib46) 2018; 118
Mirabi (bib8) 2011; 55
Xu, Wu, Yin, Lin (bib25) 2017; 52
Xu, Li, Hu, Li (bib33) 2014; 270
Ríos-Mercado, Bard (bib10) 2003; 7
Wang, Wang, Shen (bib29) 2016
Gholami-Zanjani, Hakimifar, Nazemi, Jolai (bib21) 2017; 30
Ramezanian, Vali-Siar, Jalalian (bib24) 2019; 57
Kaweegitbundit (bib11) 2011; 339
Khare, Agrawal (bib45) 2019; 135
Wang, Dong, Chen, Lin (bib20) 2014; 277
Wang (10.1016/j.swevo.2020.100742_bib29) 2016
Wang (10.1016/j.swevo.2020.100742_bib44) 2019; 49
Xu (10.1016/j.swevo.2020.100742_bib25) 2017; 52
Liu (10.1016/j.swevo.2020.100742_bib35) 2018; 29
Bouamama (10.1016/j.swevo.2020.100742_bib41) 2012; 12
Conner (10.1016/j.swevo.2020.100742_bib2) 2009; 93–99
Pan (10.1016/j.swevo.2020.100742_bib7) 2019; 124
Kaweegitbundit (10.1016/j.swevo.2020.100742_bib11) 2011; 339
Fernandez-Viagas (10.1016/j.swevo.2020.100742_bib32) 2018; 118
Ruiz (10.1016/j.swevo.2020.100742_bib17) 2005; 165
Wang (10.1016/j.swevo.2020.100742_bib22) 2017; 5
Gao (10.1016/j.swevo.2020.100742_bib50) 2019; 6
Graham (10.1016/j.swevo.2020.100742_bib3) 1979; 5
Vanchipura (10.1016/j.swevo.2020.100742_bib14) 2014; 33
Porta (10.1016/j.swevo.2020.100742_bib40) 2013; 39
Marichelvam (10.1016/j.swevo.2020.100742_bib53) 2020; 114
Ruiz (10.1016/j.swevo.2020.100742_bib4) 2019; 83
Yuan (10.1016/j.swevo.2020.100742_bib36) 2019; 99
Zhang (10.1016/j.swevo.2020.100742_bib52) 2018; 76
Sioud (10.1016/j.swevo.2020.100742_bib15) 2018; 264
Pan (10.1016/j.swevo.2020.100742_bib16) 2019; 81
Liu (10.1016/j.swevo.2020.100742_bib34) 2016; 27
Bargaoui (10.1016/j.swevo.2020.100742_bib28) 2017; 111
Gao (10.1016/j.swevo.2020.100742_bib31) 2011; 4
Ruiz (10.1016/j.swevo.2020.100742_bib38) 2007; 177
Nawaz (10.1016/j.swevo.2020.100742_bib12) 1983; 11
Guo (10.1016/j.swevo.2020.100742_bib27) 2019
Johnson (10.1016/j.swevo.2020.100742_bib49) 1954; 1
Karabulut (10.1016/j.swevo.2020.100742_bib48) 2014; 279
Taillard (10.1016/j.swevo.2020.100742_bib42) 1990; 47
Gholami-Zanjani (10.1016/j.swevo.2020.100742_bib21) 2017; 30
Xu (10.1016/j.swevo.2020.100742_bib33) 2014; 270
Cao (10.1016/j.swevo.2020.100742_bib51) 2019
Zhao (10.1016/j.swevo.2020.100742_bib39) 2018; 91
Naderi (10.1016/j.swevo.2020.100742_bib1) 2010; 37
Meng (10.1016/j.swevo.2020.100742_bib37) 2019; 210
Vanchipura (10.1016/j.swevo.2020.100742_bib13) 2013; 67
Li (10.1016/j.swevo.2020.100742_bib47) 2018; 53
Khare (10.1016/j.swevo.2020.100742_bib45) 2019; 135
Lin (10.1016/j.swevo.2020.100742_bib6) 2013; 51
Zhao (10.1016/j.swevo.2020.100742_bib19) 2020; 17
Ríos-Mercado (10.1016/j.swevo.2020.100742_bib10) 2003; 7
Wang (10.1016/j.swevo.2020.100742_bib18) 2016; 3
Li (10.1016/j.swevo.2020.100742_bib23) 2012; 9
Wang (10.1016/j.swevo.2020.100742_bib20) 2014; 277
Mirabi (10.1016/j.swevo.2020.100742_bib8) 2011; 55
Ramezanian (10.1016/j.swevo.2020.100742_bib24) 2019; 57
Li (10.1016/j.swevo.2020.100742_bib30) 2015
Ríos-Mercado (10.1016/j.swevo.2020.100742_bib9) 1998; 25
Fernandez-Viagas (10.1016/j.swevo.2020.100742_bib5) 2015; 53
Ciavotta (10.1016/j.swevo.2020.100742_bib26) 2013; 227
Fernandez-Viagas (10.1016/j.swevo.2020.100742_bib46) 2018; 118
Pan (10.1016/j.swevo.2020.100742_bib43) 2018
References_xml – volume: 5
  start-page: 26046
  year: 2017
  end-page: 26062
  ident: bib22
  article-title: A hybrid chaotic biogeography based optimization for the sequence dependent setup times flowshop scheduling problem with weighted tardiness objective
  publication-title: IEEE Access
– volume: 3
  start-page: 235
  year: 2016
  end-page: 246
  ident: bib18
  article-title: A hybrid estimation of distribution algorithm for unrelated parallel machine scheduling with sequence-dependent setup times
  publication-title: IEEE/CAA Journal of Automatica Sinica.
– year: 2015
  ident: bib30
  article-title: The Distributed Permutation Flowshop Scheduling Problem: A Genetic Algorithm Approach
– volume: 49
  start-page: 542
  year: 2019
  end-page: 555
  ident: bib44
  article-title: Improving metaheuristic algorithms with information feedback models
  publication-title: IEEE Transactions on Cybernetics
– volume: 91
  start-page: 347
  year: 2018
  end-page: 363
  ident: bib39
  article-title: A discrete water wave optimization algorithm for no-wait flow shop scheduling problem
  publication-title: Expert Syst. Appl.
– volume: 30
  start-page: 552
  year: 2017
  end-page: 563
  ident: bib21
  article-title: Robust and fuzzy optimisation models for a flow shop scheduling problem with sequence dependent setup times: a real case study on a PCB assembly company
  publication-title: Int. J. Comput. Integrated Manuf.
– volume: 37
  start-page: 754
  year: 2010
  end-page: 768
  ident: bib1
  article-title: The distributed permutation flowshop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 6
  start-page: 904
  year: 2019
  end-page: 916
  ident: bib50
  article-title: A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems
  publication-title: IEEE/CAA Journal of Automatica Sinica.
– volume: 52
  start-page: 39
  year: 2017
  end-page: 47
  ident: bib25
  article-title: An iterated local search for the multi-objective permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Appl. Soft Comput.
– volume: 277
  start-page: 329
  year: 2014
  end-page: 338
  ident: bib20
  article-title: Iterated local search algorithms for the sequence-dependent setup times flow shop scheduling problem minimizing makespan
  publication-title: Foundations of Intelligent Systems
– volume: 25
  start-page: 351
  year: 1998
  end-page: 366
  ident: bib9
  article-title: Computational experience with a branch-and-cut algorithm for flowshop scheduling with setups
  publication-title: Comput. Oper. Res.
– volume: 53
  start-page: 408
  year: 2018
  end-page: 425
  ident: bib47
  article-title: An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects
  publication-title: Inf. Sci.
– start-page: 2240
  year: 2016
  end-page: 2246
  ident: bib29
  article-title: A hybrid discrete cuckoo search for distributed permutation flowshop scheduling problem
  publication-title: 2016 IEEE Congress on Evolutionary Computation
– volume: 118
  start-page: 464
  year: 2018
  end-page: 477
  ident: bib32
  article-title: The distributed permutation flow shop to minimise the total flowtime
  publication-title: Comput. Ind. Eng.
– volume: 27
  start-page: 508
  year: 2016
  end-page: 520
  ident: bib34
  article-title: Strategy configurations of multiple users competition for cloud service reservation
  publication-title: IEEE Trans. Parallel Distr. Syst.
– volume: 76
  start-page: 96
  year: 2018
  end-page: 107
  ident: bib52
  article-title: Discrete differential evolution algorithm for distributed blocking flowshop scheduling with makespan criterion
  publication-title: Eng. Appl. Artif. Intell.
– volume: 57
  start-page: 3311
  year: 2019
  end-page: 3333
  ident: bib24
  article-title: Green permutation flowshop scheduling problem with sequence-dependent setup times: a case study
  publication-title: Int. J. Prod. Res.
– volume: 114
  start-page: 104812
  year: 2020
  ident: bib53
  article-title: An improved particle swarm optimization algorithm to solve hybrid flowshop scheduling problems with the effect of human factors – a case study
  publication-title: Comput. Oper. Res.
– volume: 93–99
  year: 2009
  ident: bib2
  article-title: 10 questions
  publication-title: Manufacturing engineering magazine
– volume: 47
  start-page: 65
  year: 1990
  end-page: 74
  ident: bib42
  article-title: Some efficient heuristic methods for the flow shop sequencing problem
  publication-title: Eur. J. Oper. Res.
– volume: 124
  start-page: 309
  year: 2019
  end-page: 324
  ident: bib7
  article-title: Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem
  publication-title: Expert Syst. Appl.
– volume: 33
  start-page: 65
  year: 2014
  end-page: 75
  ident: bib14
  article-title: Improvement of constructive heuristics using variable neighbourhood descent for scheduling a flow shop with sequence dependent setup time
  publication-title: J. Manuf. Syst.
– volume: 12
  start-page: 1632
  year: 2012
  end-page: 1639
  ident: bib41
  article-title: A population-based iterated greedy algorithm for the minimum weight vertex cover problem
  publication-title: Appl. Soft Comput.
– volume: 339
  start-page: 332
  year: 2011
  end-page: 335
  ident: bib11
  article-title: Comparison of heuristic for flow shop scheduling problems with sequence dependent setup time
  publication-title: Adv. Mater. Res.
– volume: 165
  start-page: 34
  year: 2005
  end-page: 54
  ident: bib17
  article-title: Solving the flowshop scheduling problem with sequence dependent setup times using advanced metaheuristics
  publication-title: Eur. J. Oper. Res.
– volume: 81
  start-page: 105492
  year: 2019
  ident: bib16
  article-title: Effective constructive heuristics and meta-heuristics for the distributed assembly permutation flowshop scheduling problem
  publication-title: Appl. Soft Comput.
– volume: 17
  start-page: 1376
  year: 2020
  end-page: 1387
  ident: bib19
  article-title: Decomposition method for new single-machine scheduling problems from steel production systems
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 5
  start-page: 287
  year: 1979
  end-page: 326
  ident: bib3
  article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey
  publication-title: Annals of Discrete Mathematics
– volume: 39
  start-page: 12
  year: 2013
  end-page: 26
  ident: bib40
  article-title: A population-based iterated greedy algorithm for the delimitation and zoning of rural settlements
  publication-title: Comput. Environ. Urban Syst.
– volume: 7
  start-page: 291
  year: 2003
  end-page: 318
  ident: bib10
  article-title: The flow shop scheduling polyhedron with setup times
  publication-title: J. Combin. Optim.
– volume: 1
  start-page: 61
  year: 1954
  end-page: 68
  ident: bib49
  article-title: Optimal two- and three-stage production schedules with setup times included
  publication-title: Nav. Res. Logist. Q.
– volume: 270
  start-page: 255
  year: 2014
  end-page: 287
  ident: bib33
  article-title: A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues
  publication-title: Inf. Sci.
– volume: 67
  start-page: 1337
  year: 2013
  end-page: 1353
  ident: bib13
  article-title: Development and analysis of constructive heuristic algorithms for flow shop scheduling problems with sequence-dependent setup times
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 4
  start-page: 497
  year: 2011
  end-page: 508
  ident: bib31
  article-title: A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 83
  start-page: 213
  year: 2019
  end-page: 222
  ident: bib4
  article-title: Iterated greedy methods for the distributed permutation flowshop scheduling problem
  publication-title: Omega
– volume: 51
  start-page: 5029
  year: 2013
  end-page: 5038
  ident: bib6
  article-title: Minimising makespan in distributed permutation flowshops using a modified iterated greedy algorithm
  publication-title: Int. J. Prod. Res.
– volume: 279
  start-page: 383
  year: 2014
  end-page: 395
  ident: bib48
  article-title: A variable iterated greedy algorithm for the traveling salesman problem with time windows
  publication-title: Inf. Sci.
– volume: 11
  start-page: 91
  year: 1983
  end-page: 95
  ident: bib12
  article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
  publication-title: Omega
– volume: 264
  start-page: 66
  year: 2018
  end-page: 73
  ident: bib15
  article-title: Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times
  publication-title: Eur. J. Oper. Res.
– volume: 118
  start-page: 464
  year: 2018
  end-page: 477
  ident: bib46
  article-title: The distributed permutation flow shop to minimise the total flowtime
  publication-title: Comput. Ind. Eng.
– start-page: 1
  year: 2019
  end-page: 14
  ident: bib51
  article-title: A knowledge-based cuckoo search algorithm to schedule a flexible job shop with sequencing flexibility
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 29
  start-page: 2503
  year: 2018
  end-page: 2513
  ident: bib35
  article-title: Minimal cost server configuration for meeting time-varying resource demands in cloud centers
  publication-title: IEEE Trans. Parallel Distr. Syst.
– volume: 9
  start-page: 578
  year: 2012
  end-page: 595
  ident: bib23
  article-title: Adaptive hybrid algorithms for the sequence-dependent setup time permutation flow shop scheduling problem
  publication-title: IEEE Trans. Autom. Sci. Eng.
– start-page: 8379
  year: 2018
  end-page: 8383
  ident: bib43
  article-title: A discrete artificial bee colony for distributed permutation flowshop scheduling problem with total flow time minimization
  publication-title: 2018 37th Chinese Control Conference
– volume: 111
  start-page: 239
  year: 2017
  end-page: 250
  ident: bib28
  article-title: A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion
  publication-title: Comput. Ind. Eng.
– volume: 135
  start-page: 780
  year: 2019
  end-page: 792
  ident: bib45
  article-title: Scheduling hybrid flowshop with sequence-dependent setup times and due windows to minimize total weighted earliness and tardiness
  publication-title: Comput. Ind. Eng.
– volume: 210
  start-page: 710
  year: 2019
  end-page: 723
  ident: bib37
  article-title: MILP models for energy-aware flexible job shop scheduling problem
  publication-title: J. Clean. Prod.
– volume: 177
  start-page: 2033
  year: 2007
  end-page: 2049
  ident: bib38
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 55
  start-page: 317
  year: 2011
  end-page: 326
  ident: bib8
  article-title: Ant colony optimization technique for the sequence-dependent flowshop scheduling problem
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 1
  year: 2019
  end-page: 11
  ident: bib27
  article-title: Lexicographic multiobjective scatter search for the optimization of sequence-dependent selective disassembly subject to multiresource constraints
  publication-title: IEEE Transactions on Cybernetics
– volume: 53
  start-page: 1111
  year: 2015
  end-page: 1123
  ident: bib5
  article-title: A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem
  publication-title: Int. J. Prod. Res.
– volume: 227
  start-page: 301
  year: 2013
  end-page: 313
  ident: bib26
  article-title: Multi-objective sequence dependent setup times permutation flowshop: a new algorithm and a comprehensive study
  publication-title: Eur. J. Oper. Res.
– volume: 99
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib36
  article-title: Bi-objective task scheduling for distributed green data centers
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 227
  start-page: 301
  year: 2013
  ident: 10.1016/j.swevo.2020.100742_bib26
  article-title: Multi-objective sequence dependent setup times permutation flowshop: a new algorithm and a comprehensive study
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2012.12.031
– volume: 25
  start-page: 351
  year: 1998
  ident: 10.1016/j.swevo.2020.100742_bib9
  article-title: Computational experience with a branch-and-cut algorithm for flowshop scheduling with setups
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(97)00079-8
– volume: 53
  start-page: 1111
  year: 2015
  ident: 10.1016/j.swevo.2020.100742_bib5
  article-title: A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2014.948578
– volume: 47
  start-page: 65
  year: 1990
  ident: 10.1016/j.swevo.2020.100742_bib42
  article-title: Some efficient heuristic methods for the flow shop sequencing problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(90)90090-X
– volume: 210
  start-page: 710
  year: 2019
  ident: 10.1016/j.swevo.2020.100742_bib37
  article-title: MILP models for energy-aware flexible job shop scheduling problem
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.11.021
– volume: 339
  start-page: 332
  year: 2011
  ident: 10.1016/j.swevo.2020.100742_bib11
  article-title: Comparison of heuristic for flow shop scheduling problems with sequence dependent setup time
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.339.332
– volume: 52
  start-page: 39
  year: 2017
  ident: 10.1016/j.swevo.2020.100742_bib25
  article-title: An iterated local search for the multi-objective permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.11.031
– start-page: 1
  year: 2019
  ident: 10.1016/j.swevo.2020.100742_bib27
  article-title: Lexicographic multiobjective scatter search for the optimization of sequence-dependent selective disassembly subject to multiresource constraints
  publication-title: IEEE Transactions on Cybernetics
– volume: 264
  start-page: 66
  year: 2018
  ident: 10.1016/j.swevo.2020.100742_bib15
  article-title: Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.06.027
– volume: 1
  start-page: 61
  year: 1954
  ident: 10.1016/j.swevo.2020.100742_bib49
  article-title: Optimal two- and three-stage production schedules with setup times included
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800010110
– volume: 17
  start-page: 1376
  year: 2020
  ident: 10.1016/j.swevo.2020.100742_bib19
  article-title: Decomposition method for new single-machine scheduling problems from steel production systems
  publication-title: IEEE Trans. Autom. Sci. Eng.
– start-page: 8379
  year: 2018
  ident: 10.1016/j.swevo.2020.100742_bib43
  article-title: A discrete artificial bee colony for distributed permutation flowshop scheduling problem with total flow time minimization
– volume: 76
  start-page: 96
  year: 2018
  ident: 10.1016/j.swevo.2020.100742_bib52
  article-title: Discrete differential evolution algorithm for distributed blocking flowshop scheduling with makespan criterion
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.09.005
– volume: 9
  start-page: 578
  year: 2012
  ident: 10.1016/j.swevo.2020.100742_bib23
  article-title: Adaptive hybrid algorithms for the sequence-dependent setup time permutation flow shop scheduling problem
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2012.2192729
– volume: 165
  start-page: 34
  year: 2005
  ident: 10.1016/j.swevo.2020.100742_bib17
  article-title: Solving the flowshop scheduling problem with sequence dependent setup times using advanced metaheuristics
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2004.01.022
– start-page: 1
  year: 2019
  ident: 10.1016/j.swevo.2020.100742_bib51
  article-title: A knowledge-based cuckoo search algorithm to schedule a flexible job shop with sequencing flexibility
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 3
  start-page: 235
  year: 2016
  ident: 10.1016/j.swevo.2020.100742_bib18
  article-title: A hybrid estimation of distribution algorithm for unrelated parallel machine scheduling with sequence-dependent setup times
  publication-title: IEEE/CAA Journal of Automatica Sinica.
  doi: 10.1109/JAS.2016.7508797
– volume: 30
  start-page: 552
  year: 2017
  ident: 10.1016/j.swevo.2020.100742_bib21
  article-title: Robust and fuzzy optimisation models for a flow shop scheduling problem with sequence dependent setup times: a real case study on a PCB assembly company
  publication-title: Int. J. Comput. Integrated Manuf.
  doi: 10.1080/0951192X.2016.1187293
– volume: 53
  start-page: 408
  year: 2018
  ident: 10.1016/j.swevo.2020.100742_bib47
  article-title: An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.04.038
– volume: 111
  start-page: 239
  year: 2017
  ident: 10.1016/j.swevo.2020.100742_bib28
  article-title: A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.07.020
– volume: 99
  start-page: 1
  year: 2019
  ident: 10.1016/j.swevo.2020.100742_bib36
  article-title: Bi-objective task scheduling for distributed green data centers
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 5
  start-page: 287
  year: 1979
  ident: 10.1016/j.swevo.2020.100742_bib3
  article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey
  publication-title: Annals of Discrete Mathematics
  doi: 10.1016/S0167-5060(08)70356-X
– volume: 7
  start-page: 291
  year: 2003
  ident: 10.1016/j.swevo.2020.100742_bib10
  article-title: The flow shop scheduling polyhedron with setup times
  publication-title: J. Combin. Optim.
  doi: 10.1023/A:1027372722187
– volume: 27
  start-page: 508
  year: 2016
  ident: 10.1016/j.swevo.2020.100742_bib34
  article-title: Strategy configurations of multiple users competition for cloud service reservation
  publication-title: IEEE Trans. Parallel Distr. Syst.
  doi: 10.1109/TPDS.2015.2398435
– year: 2015
  ident: 10.1016/j.swevo.2020.100742_bib30
– volume: 118
  start-page: 464
  year: 2018
  ident: 10.1016/j.swevo.2020.100742_bib46
  article-title: The distributed permutation flow shop to minimise the total flowtime
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.03.014
– start-page: 2240
  year: 2016
  ident: 10.1016/j.swevo.2020.100742_bib29
  article-title: A hybrid discrete cuckoo search for distributed permutation flowshop scheduling problem
– volume: 5
  start-page: 26046
  year: 2017
  ident: 10.1016/j.swevo.2020.100742_bib22
  article-title: A hybrid chaotic biogeography based optimization for the sequence dependent setup times flowshop scheduling problem with weighted tardiness objective
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2769100
– volume: 279
  start-page: 383
  year: 2014
  ident: 10.1016/j.swevo.2020.100742_bib48
  article-title: A variable iterated greedy algorithm for the traveling salesman problem with time windows
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.03.127
– volume: 55
  start-page: 317
  year: 2011
  ident: 10.1016/j.swevo.2020.100742_bib8
  article-title: Ant colony optimization technique for the sequence-dependent flowshop scheduling problem
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-3037-0
– volume: 11
  start-page: 91
  year: 1983
  ident: 10.1016/j.swevo.2020.100742_bib12
  article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
  publication-title: Omega
  doi: 10.1016/0305-0483(83)90088-9
– volume: 4
  start-page: 497
  year: 2011
  ident: 10.1016/j.swevo.2020.100742_bib31
  article-title: A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 91
  start-page: 347
  year: 2018
  ident: 10.1016/j.swevo.2020.100742_bib39
  article-title: A discrete water wave optimization algorithm for no-wait flow shop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.028
– volume: 93–99
  year: 2009
  ident: 10.1016/j.swevo.2020.100742_bib2
  article-title: 10 questions
  publication-title: Manufacturing engineering magazine
– volume: 6
  start-page: 904
  year: 2019
  ident: 10.1016/j.swevo.2020.100742_bib50
  article-title: A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems
  publication-title: IEEE/CAA Journal of Automatica Sinica.
  doi: 10.1109/JAS.2019.1911540
– volume: 39
  start-page: 12
  year: 2013
  ident: 10.1016/j.swevo.2020.100742_bib40
  article-title: A population-based iterated greedy algorithm for the delimitation and zoning of rural settlements
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2013.01.006
– volume: 124
  start-page: 309
  year: 2019
  ident: 10.1016/j.swevo.2020.100742_bib7
  article-title: Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.062
– volume: 67
  start-page: 1337
  year: 2013
  ident: 10.1016/j.swevo.2020.100742_bib13
  article-title: Development and analysis of constructive heuristic algorithms for flow shop scheduling problems with sequence-dependent setup times
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-012-4571-8
– volume: 118
  start-page: 464
  year: 2018
  ident: 10.1016/j.swevo.2020.100742_bib32
  article-title: The distributed permutation flow shop to minimise the total flowtime
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.03.014
– volume: 177
  start-page: 2033
  year: 2007
  ident: 10.1016/j.swevo.2020.100742_bib38
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.12.009
– volume: 49
  start-page: 542
  year: 2019
  ident: 10.1016/j.swevo.2020.100742_bib44
  article-title: Improving metaheuristic algorithms with information feedback models
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2780274
– volume: 37
  start-page: 754
  year: 2010
  ident: 10.1016/j.swevo.2020.100742_bib1
  article-title: The distributed permutation flowshop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2009.06.019
– volume: 277
  start-page: 329
  year: 2014
  ident: 10.1016/j.swevo.2020.100742_bib20
  article-title: Iterated local search algorithms for the sequence-dependent setup times flow shop scheduling problem minimizing makespan
  publication-title: Foundations of Intelligent Systems
  doi: 10.1007/978-3-642-54924-3_31
– volume: 12
  start-page: 1632
  year: 2012
  ident: 10.1016/j.swevo.2020.100742_bib41
  article-title: A population-based iterated greedy algorithm for the minimum weight vertex cover problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.02.013
– volume: 81
  start-page: 105492
  year: 2019
  ident: 10.1016/j.swevo.2020.100742_bib16
  article-title: Effective constructive heuristics and meta-heuristics for the distributed assembly permutation flowshop scheduling problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105492
– volume: 29
  start-page: 2503
  year: 2018
  ident: 10.1016/j.swevo.2020.100742_bib35
  article-title: Minimal cost server configuration for meeting time-varying resource demands in cloud centers
  publication-title: IEEE Trans. Parallel Distr. Syst.
  doi: 10.1109/TPDS.2018.2836452
– volume: 33
  start-page: 65
  year: 2014
  ident: 10.1016/j.swevo.2020.100742_bib14
  article-title: Improvement of constructive heuristics using variable neighbourhood descent for scheduling a flow shop with sequence dependent setup time
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2013.07.003
– volume: 135
  start-page: 780
  year: 2019
  ident: 10.1016/j.swevo.2020.100742_bib45
  article-title: Scheduling hybrid flowshop with sequence-dependent setup times and due windows to minimize total weighted earliness and tardiness
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.06.057
– volume: 83
  start-page: 213
  year: 2019
  ident: 10.1016/j.swevo.2020.100742_bib4
  article-title: Iterated greedy methods for the distributed permutation flowshop scheduling problem
  publication-title: Omega
  doi: 10.1016/j.omega.2018.03.004
– volume: 114
  start-page: 104812
  year: 2020
  ident: 10.1016/j.swevo.2020.100742_bib53
  article-title: An improved particle swarm optimization algorithm to solve hybrid flowshop scheduling problems with the effect of human factors – a case study
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2019.104812
– volume: 51
  start-page: 5029
  year: 2013
  ident: 10.1016/j.swevo.2020.100742_bib6
  article-title: Minimising makespan in distributed permutation flowshops using a modified iterated greedy algorithm
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2013.790571
– volume: 270
  start-page: 255
  year: 2014
  ident: 10.1016/j.swevo.2020.100742_bib33
  article-title: A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.122
– volume: 57
  start-page: 3311
  year: 2019
  ident: 10.1016/j.swevo.2020.100742_bib24
  article-title: Green permutation flowshop scheduling problem with sequence-dependent setup times: a case study
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1581955
SSID ssj0000602559
Score 2.299061
Snippet The distributed permutation flowshop scheduling problem (DPFSP) has attracted much attention in recent years. In this paper, we extend the DPFSP by considering...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100742
SubjectTerms Flowshop
Iterated greedy algorithm
Meta-heuristics
Scheduling
Title An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
URI https://dx.doi.org/10.1016/j.swevo.2020.100742
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgOXUl6i5aE9cIONks06ax8jVGiLVBVRpNysfXiBKnKsxEl670_oH2b25TgERfTAxbJW67Wd-Tw7s_l2PoTeKT20WxYNYQVjhEFQSqQa9ImiSpi0Z3SSGSc2wS8u0vE4u-x07uJemOWEl2V6c5NV_9XU0AbGtltn72HuZlBogHMwOhzB7HD8J8OPykDSsJwgXzQZgkpIq8GfBsHohluobdlcq3gFPSrw0YvIPZxMV_Of0-o95L4wF4Ut6056JpDaAwObRBHdGprqRdXSqg8R77eVmHkZjmIZ3tsS9ZRTk9igAZwuwtr1OUD2B7mMk6r7g8s5x6_Qg3xpoPhZTP2yggg9w-oFbTNBnJOjkHISiBI3PHKoEe5dqqVx-AJcW97eLzxcd-creIOuHb677r1ZW_uPOa9hIkaS23XuBsntILkf5AHapzzJwFXuj85OxufN0l1v6BIxK1sYnz7Ws3LMwa3H-XvM04pjrg7RQUhA8MgD5wnqFOVT9DiKe-Dg65-h21GJGxzhiCPscYQ9jjDgCAOOcAtHuIUjHHGE1zjCAUfY4ghv4wg7HGGHo-fo-6eTq4-nJCh2wLfdT2tiZKFTlppEMy24pVtJwUwiijRhGaeCMsMV5VSyARPGcNODdIT3dd_W18rEcPAC7ZXTsniJsDZaFlInRtiSkT0hNFdykKRSSQjSpTpCNP6muQrl7K2qyiTfYdIj9KG5qPLVXHZ3H0Zj5SEg9YFmDgjcdeHx_e7zCj1afxuv0V49WxRv0EO1rH_NZ28D_H4DINe2aw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+iterated+greedy+method+for+the+distributed+permutation+flowshop+scheduling+problem+with+sequence-dependent+setup+times&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Huang%2C+Jiang-Ping&rft.au=Pan%2C+Quan-Ke&rft.au=Gao%2C+Liang&rft.date=2020-12-01&rft.issn=2210-6502&rft.volume=59&rft.spage=100742&rft_id=info:doi/10.1016%2Fj.swevo.2020.100742&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2020_100742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon